[bookmark: _GoBack]LAB # 4

INTRODUCTION TO MIPS ASSEMBLY LANGUAGE

OBJECTIVES
Introduction to MIPS Assembly language. Simulating the given MIPS program using MARS.
THEORY

The MIPS Architecture

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline Stages) is a Reduced Instruction Set Computer (RISC). MIPS is a register based architecture, meaning the CPU uses registers to perform operations on. Registers are memory just like RAM, except registers are much smaller than RAM, and are much faster. In MIPS the CPU can only do operations on registers, and special immediate values. MIPS processors have 32 registers, but some of these are reserved. A fair number of registers however are available for your use.

MIPS: Registers

The MIPS registers are arranged into a structure called a Register File. MIPS comes with 32 general purpose registers named $0. . . $31. Registers also have symbolic names reflecting their conventional use:
[image:]
Introduction to MIPS Assembly Language
Lab # 4

17
Computer Architecture & Organization

Introduction to MIPS Assembly Language

Assembly Language Program Template
################# Code segment #####################
.text
.globl main main:
. . .
. . .
li $v0, 10 syscall
main program entry
Exit program
.data
. . .
. . .
Input:
Output:
################# Data segment #####################
Filename: Date:
Title:
Author:
Description:

Assembly language instruction format

Assembly language source code lines follow this format:

 	[label:] [instruction/directive] [operands] [#comment]	

where [label] is an optional symbolic name; [instruction/directive] is either the mnemonic for an instruction or pseudo-instruction or a directive; [operands] contains a combination of one, two, or three constants, memory references, and register references, as required by the particular instruction or directive; [#comment] is an optional comment.

Labels

Labels are nothing more than names used for referring to numbers and character strings or memory locations within a program. Labels let you give names to memory variables, values, and the locations of particular instructions.

The label main is equivalent to the address of the first instruction in program1.
li $v0, 5

Directives

Directives are required in every assembler program in order to define and control memory space usage. Directives only provide the framework for an assembler program, though; you also need lines in your source code that actually DO something, lines like
beq $v0, $0, end

.DATA directive
· Defines the data segment of a program containing data
· The program’s variables should be defined under this directive
· Assembler will allocate and initialize the storage of variables
· You should place your memory variables in this segment. For example,

.DATA
First:	.space 100
Second:	.word 1, 2, 3
Third:	.byte 99, 2, 3

.TEXT directive
· Defines the code segment of a program containing instructions

.GLOBL directive
· Declares a symbol as global
· Global symbols can be referenced from other files
· We use this directive to declare main procedure of a program

.ASCII Directive
· Allocates a sequence of bytes for an ASCII string

.ASCIIZ Directive
· Same as .ASCII directive, but adds a NULL char at end of string
· Strings are null-terminated, as in the C programming language

.SPACE n Directive
· Allocates space of n uninitialized bytes in the data segment

Pseudo-instructions

Pseudo-instructions give MIPS a richer set of assembly language instructions than those implemented by the hardware. For example, one of the frequent steps needed in programming is to copy the value of one register into another register. This actually can be solved easily by the instruction:
add $t0, $zero, $t1

However, it is more natural to use the pseudo-instruction move $t0, $t1.

The assembler converts this pseudo-instruction into the machine language equivalent of the prior instruction.

MIPS INSTRUCTIONS

	Instructions
	Description

	la	Rdest, var
	Load Address. Loads the address of var into Rdest.

	li	Rdest, imm
	Load Immediate. Loads the immediate value imm into
Rdest.

SYSTEM I/O (INPUT/OUTPUT)

· Programs do input/output through system calls
· MIPS provides a special syscall instruction
· To obtain services from the operating system
· Many services are provided in the MARS simulators
· There are 10 different services provided.
· Using the syscall system services
· Load the service number in register $v0
· Load argument values, if any, in registers $a0, $a1, etc.
· Issue the syscall instruction
· Retrieve return values, if any, from result registers

	Service
	Code in $v0
	Argument(s)
	Result(s)

	Print integer
	1
	$a0 = number to be printed
	

	Print String
	4
	$a0 = address of string in
memory
	

	Read Integer
	5
	
	Number returned in $v0.

	Read String
	8
	$a0 = address of input buffer in memory.
$a1 = length of buffer (n)
	

	Exit
	10
	
	

	Print Char
	11
	$a0 =character to print
	

	Read Char
	12
	$v0 = character read
	

[image:]Introduction to MARS

MARS, the MIPS Assembly and Runtime Simulator, will assemble and simulate the execution of MIPS assembly language programs. It can be used either from a command line or through its integrated development environment (IDE). MARS is written in Java and requires at least Release 1.5 of the J2SE Java Runtime Environment (JRE) to work.

MARS Editor
[image:]

MARS Integrated Development Environment (IDE)

The IDE is invoked from a graphical interface by double-clicking the mars.jar icon that represents this executable JAR file. The IDE provides basic editing, assembling and execution capabilities. Hopefully it is intuitive to use. Here are comments on some features.
· Menus and Toolbar: Most menu items have equivalent toolbar icons. If the function of a toolbar icon is not obvious, just hover the mouse over it and a tool tip will soon appear. Nearly all menu items also have keyboard shortcuts. Any menu item not appropriate in a given situation is disabled.
· Editor: MARS includes two integrated text editors. The default editor, new in Release 4.0, features syntax-aware color highlighting of most MIPS language elements and popup instruction guides. The original, generic, text editor without these features is still available and can be selected in the Editor Settings dialog. It supports a single font which can be modified in the Editor Settings dialog. The bottom border of either editor includes the cursor line and column position and there is a checkbox to display line numbers. They are displayed outside the editing area. If you use an external editor, MARS provides a convenience setting that will automatically assemble a file as soon as it is opened. See the Settings menu.
· Message Areas: There are two tabbed message areas at the bottom of the screen. The Run I/O tab is used at runtime for displaying console output and entering console input as program execution progresses. You have the option of entering console input into a pop-up dialog then echoes to the message area. The MARS Messages tab is used for other messages such as assembly or

runtime errors and informational messages. You can click on assembly error messages to select the corresponding line of code in the editor.
· MIPS Registers: MIPS registers are displayed at all times, even when you are editing and not running a program. While writing your program, this serves as a useful reference for register names and their conventional uses (hover mouse over the register name to see tool tips). There are three register tabs: the Register File (integer registers $0 through $31 plus LO, HI and the Program Counter), selected Coprocessor 0 registers (exceptions and interrupts), and Coprocessor 1 floating point registers.
· Assembly: Select Assemble from the Run menu or the corresponding toolbar icon to assemble the file currently in the Edit tab. Prior to Release 3.1, only one file could be assembled and run at a time. Releases 3.1 and later provide a primitive Project capability. To use it, go to the Settings menu and check Assemble operation applies to all files in current directory. Subsequently, the assembler will assemble the current file as the “main” program and also assemble all other assembly files (*.asm; *.s) in the same directory. The results are linked and if all these operations were successful the program can be executed. Labels that are declared global with the “.globl” directive may be referenced in any of the other files in the project. There is also a setting that permits automatic loading and assembly of a selected exception handler file. MARS uses the MIPS32 starting address for exception handlers: 0x80000180.
· Execution: Once a MIPS program successfully assembles, the registers are initialized and three windows in the Execute tab are filled: Text Segment, Data Segment, and Program Labels. The major execution-time features are described below.
· Labels Window: Display of the Labels window (symbol table) is controlled through the Settings menu. When displayed, you can click on any label or its associated address to center and highlight the contents of that address in the Text Segment window or Data Segment window as appropriate.
The assembler and simulator are invoked from the IDE when you select the Assemble, Go, or Step operations from the Run menu or their corresponding toolbar icons or keyboard shortcuts. MARS messages are displayed on the MARS Messages tab of the message area at the bottom of the screen. Runtime console input and output is handled in the Run I/O tab.

Program#1:
Reading and Printing an Integer

################# Code segment #####################
.text
.globl main
main:		# main program entry li	$v0, 5	# Read integer
syscall		# $v0 = value read move $a0, $v0	# $a0 = value to print li	$v0, 1	# Print integer syscall
li	$v0, 10	# Exit program syscall

STEP# 1
Load mars simulator, copy this code to the editor and save file with .asm extension.
[image:]

STEP# 2
Assemble program by pressing F3.

[image:]

[image:]

[image:]

STEP# 3
Execute program by pressing F5. Type any integer number for input.

[image:]

LAB TASK

1. Where (to which window) is the output data displayed?

2. Write down the address of the first instruction of the program (see the text window)

3. Write down the value of the register $sp just before you start the program.

4. Write down the values of $a0 and $v0 after execution in Register window and why?

5. Write an assembly program that Read and Print character.

image2.png

image3.png

image4.png
Supported by MARS

image5.jpeg
[Cea&R 55480 x]6]6/0]0/0]0|[0], ewummnnoy

[Dote | s | comec | camoc |

o | turon -]
3 —
o o
5 shetieer

image6.png
= Run speed at max (1o interaction)
=] B AR % Q Q| @ TRy
Eat | Exeaute | 4 Regisers | Coproc 1 | Coproco
aasm | Name | Number Value
: ———— e o owono0o000
P far T owons00000
S siobl nain o T
5 e # mein progran eatzy o I
s u s & e mteer B o easomonny
c syseall " et e v 0 I
. TR G el ez & 0x00000000
H Syseall a3 7 0x00000000
10 1i §v0, 10 # Exit program e0 El 0%00000000,
1 syseall o I
12 i 10 oxov0s0009
13 §t3 11 0x00000000)]
i 12 oxovoo000s
s T3 oxovosoog
e 14 oxov000009
= 15 oxosooog
(5] 15 oxovos0o0s
(3 7 oxososoog
oz 15 oxovos000s
(5 15 oxovosoog
i E R
(] 21 oxososoog
456 | 22 0x00000000|
is7 25 oxososoog
=] 24~ oxovos0os
=] 25 oxososoog
o L I ko 25 oxovos0ung
Lines 1 Cotumn; 18 7] Show Line Numbers i 27 oxososoong
= o 25 oxto00ae0s
Mars Messages | Runto | i 29 owesteces
i S0 oxoo0s0009
i Si oxovosoog
b Grona0s0ic
Dieat i 00009000
o 00009000
[Glear e Fun o aea]

image7.png
DlaaaErls e % o © @] M momoaciny

["Ear | Execute | [Registers | Coproc 1 | Copraco
BT =] [ere [tumser | vawo
fzer 3 oxoonnong
Bhot |_Address | Code Bacie Source et 1 oxcoo0o0g
[| 0x00400000| 0x24020005, &V 2| 0x00000000)
L[] | 0x00400004] 0x0000000c(s¥Scall syscall # §v0 = val. sl E 0x00000000)
L[] | oxoo400008] 0x00022021(addu §4,50,5§2 move §al, §v0 # §a0 = value to ... sa0 4 0x00000000)
[] | oxo0a0000: oxzanzanosddin §2,¢0,050001 T w1 # Prin inceger (0 s oxaonoouog
L] | ox0o0400010] 0x0000000c|s¥scall syscall §az 8| 0x00000000]
L[] | ox00400014] 0x2402000a/addiu §2,§0,0%000a 11 §v0, 10 # Exit program a3 7 0x00000000)
L[] [ox0o400018] oxoooooooc|syscall syscall st0 8| 0x00000000]
oo 5 oxaonoouog
e 10, seononoono
=1l ifse= 11| 0x00000000]
m o ||| = 12| TX00000000]
s 15 ovononoono
5 veta seqment i || 14 meononoono
o 15 ovononoono
Address | Value (+0) | Value (+4) [Value (+8) | Value (rc) | Value (+10) | value (+14) | Value +18) | Value (+1¢) %50 T6 Gx00000000
5 L0010000] GXO0000000] GxB0000000] 0¥00003000 <0000 500000000 000000000 x00000000 0000000t | |27 e
1010020] 000000000 GB0000000] 0x00000000 <0000 Gx0000000 Gx00000000]0x00000000 <0000 | |22 T eosaamem
100100 0] GXO0000000] GA0000000] 0¥00000000 <0000 300000000 000000000 x00000000 <0uaoon| | |2 e
10010060 000000000 GxB0000000] x00000000 X000 300000000 Gx00000000] 000000000 x0coooon| | |22 e
5 L0010000] GXO0000000] GA0000000] 0¥00000000 <0000 300000000 00000000 000000000 <0000 | |22 T
1010520 000000000 GxB0000000] 0X0000000 <0000 GxB0000000] (x00000000] 0x00000000) oxovoocon| ||| |22 |2 Deaoaonan)
5 100100c0| GXO0000000] GA0000000] 0¥00000000 <0000 300000000 000000000 00000000 xonnoon| | |2 i
5 L010500] 000000000 GxB000000] 0x00000000] 0¥000R00) 300000000 (x00000000] 00000000 xooaoon< | |57 e
<1 ID 0= 25 0x00000000,
% | & |[ox10010000 (data) | ~] iHexadecimal Addresses] Hexadecimal Values [] ASCIl) 25 CRO0000000
L A [1 oeononoono
= i 26 metoonaono
Mars Messages | Run10 | = B GEetetry
i 30 meonouoono
ssemble: assembling C:\Documents and Settings\Aduinistrator\Desktop\la.asn = fz= 3L 0x00000000)
oo 0400000
clear | haseanie: operation completed suscesatully. 2l OOD000000
5 0000000

image8.png
[Text Segment

o
Bkpt | Address Code Basic Source
[| oxo0400000] 0x24020005
[| oxo0anoona| ox0000000c|syscall syscall # 490 = value read
[| ox00400008| 0x00022021(addu §4,50,§2 move §a0, §v # §a0 = value to print
[| ox0040000c] 0x24020001 addiu §2,§0,0x0001 1i §v0, 1 # Print integer
| oxo0anoo1o| 0x0000000c(syscall syscall
[| 0x00400014] 0x2402000a/addiu §2,50,0x000a 1i §v0, 10 # Exit program
[| oxo0anoo1a| ox0000000c(syscall syscall

D

image9.png
[pata Segment

o'

Address

Value (+0)

Value (+4)

Value (+8)

Value (+c)

Value (+10)

Value (+14)

Value (+18)

Value (+1c)

0xL0010000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

0%00000000)

0xL0010020

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x10010040

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

0x10010060

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0xL000080

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

0x10010020

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x100100c0)

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

x00000000

0x100100e0

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

000000000+

<

T

<

>

0x10010000 (data) |~

Hexadecimal Addresses

Hexadecimal Values [] ASCIl

image10.png
Mars Messages | Runto |

Clear

a
a
- program is finished rumning -

image1.jpeg
Register Alias

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14
$15

$zero
$at
$vo
$vi
$a0
$a1
$a2
$a3
$to
$t1
$t2
$t3
$t4
$t5
$t6
$t7

Usage
constant 0

used by assembler
function result
function result
argument 1
argument 2
argument 3
argument 4
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary
unsaved temporary

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

$s0
$s1
$s2
$s3
$s4
$s5
$s6
$s7
$t8
$t9
$k0
$k1

$sp
$fp
$ra

Usage
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
saved temporary
unsaved temporary
unsaved temporary
reserved for OS kernel
reserved for OS kernel
pointer to global data
stack pointer

frame pointer

return address

