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▪Intuitively we see that binary search is much faster 
than linear search, but how do we  analyze the 
efficiency of  algorithms formally? 



▪The time required to solve a problem depends on more 
than only the number of  operations it uses. 

▪The time also depends on the hardware and software used 
to run the program that implements the algorithm.

▪On a supercomputer we might be able to solve a problem 
of  size n a million times faster than we can on a PC. 

▪One of  the advantages of  using big-O notation, we do not 
have to worry about the hardware and software used to 
implement an algorithm.



▪Goal: To introduce the big-O notation and to show 
how to estimate the growth of  functions using this 
notation and thereby to estimate the complexity (and 
hence the running time) of  algorithms.







The growth of  functions is often described using a special notation



























▪ O(1)
▪ Big O notation O(1) represents the complexity of an algorithm that always execute in same 

time or space regardless of the input data.

▪ This function runs in O(1) time (or "constant time") relative to its input. The input array could be 1 
item or 1,000 items, but this function would still just require one step.



▪ O(n) : Big O notation O(N) represents the complexity of an algorithm, whose 
performance will grow linearly (in direct proportion) to the size of the input data.

▪ O(n) example : The execution time will depend on the size of array. When the size of 
the array increases, the execution time will also increase in the same proportion 
(linearly)

This function runs in O(n) 

time (or "linear time"), 

where n is the number of  

items in the array. If  the 

array has 10 items, we have 

to print 10 times. If  it has 

1000 items, we have to print 

1000 times.



▪ O(𝑛2) example

Other examples: Bubble sort

Here we're nesting two loops. If  our array has n items, our outer loop runs n times and our inner loop runs n 

times for each iteration of  the outer loop, giving us 𝑛2 total prints

Thus this function runs in O(𝑛2) 

time (or "quadratic time"). If  the 

array has 10 items, we have to print 

100 times. If  it has 1000 items, we 

have to print 1000000 times.





▪ When you're calculating the big O complexity of  something, you just throw out the constants. 
Like:

This is O(2n), which we just call O(n). This is O(1 + n/2 + 100), which we just call O(n).



Here our runtime is O(n + n2), which we 

just call O(n2).

Similarly:

O(n3 + 50n2 + 10000) is O(n3)

O((n + 30) * (n + 5)) is O(n2)

Again, we can get away with this because the 

less significant terms quickly become, well, 

less significant as n gets big.



Remember, 

for big O notation we're looking at what 
happens as n gets arbitrarily large. As n

gets really big, adding 100 or dividing by 2 
has a decreasingly significant effect.





If Key = 41
Then No of comparisons will be : 6

Best Case : If the key element is present at the 1st index then it is the best case
Best Case Time = 1 (as it will take constant time)
Complexity : O(1)



▪ Worst Case : Searching a key at last index  (i.e. 52)

▪ Worst Case Time : O(n)

▪ Average Case :  All possible case time / no of  cases
1+2+3+4+5+6+7+8+9 / 9

1+2+3+……..+n/n

(n(n+1) /2 ) / n

(n+1) / 2

O(n)



Minimum No. of  Comparison –> Best Case

Maximum No of  Comparison -> Worst Case

Array Size N = 8

BEST CASE : 

Search Element is equal to the very first 

middle element.

BEST CASE TIME = O(1) 

Search Element = 29

m =( L + R ) / 2

m = 0 + 7 / 2

m = 3

Middle element = Search Element



Search Element = 10

1st Comparison 

m =( L + R ) / 2

m = 0 + 7 / 2

m = 3

Middle element ≠ Search Element

▪ Array Size N = 8

▪ WORST CASE : 

▪ Search Element is present at 
either beginning of  the array or 
end of  the array.



Search Element = 10

2nd Comparison 

m =( L + R ) / 2

m = 0 + 2 / 2

m = 1

Middle element ≠ Search Element

▪ Array Size N = 8

▪ WORST CASE : 

▪ Search Element is present at 
either beginning of  the array or 
end of  the array.



Search Element = 10

3rd Comparison 

m =( L + R ) / 2

m = 0 + 0 / 2

m = 0

Middle element = Search Element

▪ Array Size N = 8

▪ WORST CASE : 

▪ Search Element is present at 
either beginning of  the array or 
end of  the array.



8/2  -> 4   = 1

4/2 -> 2 = 2

2/2 -> 1 =3

▪ Array Size N = 8

▪ WORST CASE : 

▪ Search Element is present at 
either beginning of  the array or 
end of  the array.

▪ O (𝑙𝑜𝑔2 n) 

8/21 -> 4   = 1

8/22 -> 2 = 2

8/23 -> 1 =3

N/2k = 1

N = 2k

𝑙𝑜𝑔2 N = k 𝑙𝑜𝑔2 2

k = 𝑙𝑜𝑔2 n 


