= LECTURE 11

27 Analysis of Algorithms

ALGORITHM EFFICIENCY

"Intuitively we see that binary search 1s much faster
than linear search, but how do we analyze the
etficiency of algorithms tormally?

BIG — O NOTATION

=The time required to solve a problem depends on more
than only the number of operations it uses.

*The time also depends on the hardware and software used
to run the program that implements the algorithm.

=On a supercomputer we might be able to solve a problem
of size n a million times faster than we can on a PC.

=One of the advantages of using big-O notation, we do not
have to worry about the hardware and software used to
implement an algorithm.

GROWTH OF FUNCTIONS

=Goal: To introduce the big-O notation and to show
how to estimate the growth ot functions using this
notation and thereby to estimate the complexity (and
hence the running time) ot algorithms.

ORDERS OF GROWTH: On a grach. as you
MOTIVATION / VISUALIZATION 9 o the right

the faster growing
function always

L. : eventually becomes
= Suppose you are designing a web site to the larger one...

process user data (e.g., financial records).

= Suppose database program A takes
fA(n) = 30n + 8 microseconds to process any n
records, while program B takes f3(n) = n°+ 1
microseconds to process the n records.

%.(n)=30n+8

= Which program do you choose, knowing you’ll Jo(m)=n>+1

want to support millions of users?

Value of function —

Increasing n —

= We say f,(n) = 30n + 8 is (at most) order of n,
or O(n).
= ltis, at most, roughly proportional to n.

s f3(n) = n?+ 1is order of n?, or O(n?).
=« It is (at most) roughly proportional to n?.

= Any function whose exact (tightest) order is
O(n?) is faster-growing than any O(n) function.

= For large numbers of user records, the order n?
function will always take more time.

HIAOYD 40O
HHAYHO 40 LdHdONOO

BIG-O NOTATION

The growth of functions 1s often described using a special notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) 1s O(g(x)) if there are constants C and k such that

| f(x)] = Clg(x)]

whenever x > k. [This 1s read as “ f(x) 1s big-oh of g(x).”]

Remark: Intuitively, the definition that f(x) is O(g(x)) says that f(x) grows slower that some
fixed multiple of g(x) as x grows without bound.

BIG -O NOTATION

ILLUSTRATION

The part of the graph of f(x) that satisties
f(x) < Cg(x)1s shown 1n color.

Cg(x)

f(x)

g(x)

fx) < Cg(x)forx>k

BIG -O NOTATION EXAMPLE

= Show that 30n + 8 is O(n).
= Show 3C,k such that Vn > k, 30n + 8 < Cn.
« Let k=38. Assume n > 8 (= k).
Then, 30n+ 8 <30n + n=31n.

Therefore, we can take C =31 and k=8
to show that 30n + 8 is O(n).

BIG -O NOTATION EXAMPLE

= Note 30n + 8 isn’t
less than n

anywhere (n>0). 1

= |tisn’t even less =
than 31n S 30m + 8
S c0(n)

everywhere. S

E

;J:;d

= Butit /s less than
31n everywhere to
the right of n = 8.

n=kKk=8 —

Increasing n —

BIG -O NOTATION EXAMPLE

n terms

A
|’ 1

s 1+2+--+n=sn+n+--+n+n=n-

It follows that 1 + 2 + --- + nis O(n?),
taking C =1 and k= 1 as withesses.

8 n(n+1)

Note: l+2+---+n=2i= ;

1, 1
=—n" +—n

2 2

BIG-Q2 NOTATION

Let fand g be functions from the set of integers
or the set of real numbers

to the set of real numbers.

f(x) 1s Q(g(x)) If there are positive constants

C and k such that |f(x)| = C|g(x)| whenever x > k.

This is read as "f(x) is big-Omega of g(x)."
f(x)i1s Q2(g(x)) if and only if g(x) is O(f(x))

BIG-Q2 NOTATION

Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) 1s £(g(x)) if there are positive constants C and k such that

| f(x)] = Clg(x)|

whenever x > k. [This 1s read as “ f(x) 1s big-Omega of g(x).”]

BIG-© NOTATION

Let f and g be functions from the set of integers or the set of real numbers to the set of real
numbers. We say that f(x) 1s @(g(x)) 1f f(x)1s O(g(x))and f(x)1s 2(g(x)). When f(x)
1s ®(g(x)) we say that f 1s big-Theta of g(x), that f(x) 1s of order g(x), and that f(x) and
g(x) are of the same order.

C

g = f ()] =3

g(x)]

GROWTH RATE FUNCTIONS

O(1) Time requirement is constant, and it 1s independent of the problem’s size.

O(log,n) Time requirement for a logarithmic algorithm increases increases slowly
as the problem size increases.

O(n) Time requirement for a linear algorithm increases directly with the size
of the problem.

O(n*log,n) Time requirement for a n*log,n algorithm increases more rapidly than

a linear algonithm.

O(n?) Time requirement for a quadratic algorithm increases rapidly with the
size of the problem.

O(n?) Time requirement for a cubic algorithm increases more rapidly with the
size of the problem than the time requirement for a quadratic algorithm.

O(2") As the size of the problem increases, the time requirement for an

exponential algorithm increases too rapidly to be practical.

L

n *log,n
log,n

15 20

10

LA = Ly
[L o4

100 -

uopuny 3jel-ymolb jo anjep

NOLLV.LNHSHddHY "TVIISIA
SNOLLONA ALVY HILXAOYD

ANALYSIS OF ALGORITHM

 When we analyze algorithms, we should employ
mathematical techniques that analyze algorithms
independently of specific implementations,
computers, or data.

* To analyze algorithms:

— First, we start to count the number of significant
operations 1n a particular solution to assess its
efficiency.

— Then, we will express the efficiency of algorithms
using growth functions.

L

THE EXECUTION TIME OF
ALGORITHMS

« Each operation 1n an algorithm (or a program) has a cost.

=» Each operation takes a certain of time.

count = count + 1; = take a certain amount of time, but 1t 1s constant

A sequence of operations:

count = count + 1; Cost: ¢,

sum = sum + count; Cost: ¢,

=>» Total Cost=c, + ¢,

L

GROWTH-RATE FUNCTIONS

Cost Times
i=1; cl 1
sum = 0; c2]
while (i <= n) { c3 n+l1
i =131+ 1; c4 n
sum = sum + 1i; ¢S n

}

T(n) = cl+c2+ (ntl)*c3 +n*c4 + n*c5
= (c3+cd+cS)*n + (cl+c2+c3)
=a*n+b
=>» So, the growth-rate function for this algorithm is O(n)

GROWTH-RATE FUNCTIONS

- 0(1)

= Big O notation O(1) represents the complexity of an algorithm that always execute in same
time or space regardless of the input data.

vold printFirstElementOfArray(int arr[])

printf ("First element of array = %d",arr[0]):;

= This function runs in O(1) time (or "constant time") relative to its input. The input array could be 1
item or 1,000 items, but this function would still just require one step.

€

GROWTH-RATE FUNCTIONS

= O(n) : Big O notation O(N) represents the complexity of an algorithm, whose
performance will grow linearly (in direct proportion) to the size of the input data.

= O(n) example : The execution time will depend on the size of array. When the size of

the array increases, the execution time will also increase in the same proportion
(linearly)

: - - void OfArray(int arr[], int size)
This function runs in O(n) . r
time (or "linear time"),
where n is the number of

for (int 1 = 0; 1 <€ size; 1t++)
items in the array. If the
array has 10 items, we have {
to print 10 times. If it has printf ("$d\n", arr[i]):;

1000 1items, we have to print
1000 times.

GROWTH-RATE FUNCTIONS

= O(n?) example

Here we're nesting two loops. If our array has n items, our outer loop runs n times and our inner loop runs n
times for each iteration of the outer loop, giving us n? total prints

void printAllPossibleOrderedPairs (int arr[], int size)
Thus this function runs in O(nz)
time (or "quadratic time"). If the for (int i =
array has 10 items, we have to print
100 times. If it has 1000 items, we {
have to print 1000000 times. ER
{

printf ("%d = %d\n", arr[i], arr[j]):

Other examples: Bubble sort

PROPERTIES OF GROWTH-
RATE FUNCTIONS

I. We can ignore low-order terms in an algorithm’s growth-rate

function.
— If an algorithm is O(n*+4n2+3n), it is also O(n?).

— We only use the higher-order term as algorithm’s growth-rate function.

2. We can ignore a multiplicative constant in the higher-order term

of an algorithm’s growth-rate function.
— If an algorithm is O(5n?), it is also O(n?).

3. O(f(n) + O(g(n) = O(f(n)+g(n)
— We can combine growth-rate functions.
— If an algorithm is O(n?) + O(4n), it is also O(n* +4n?) =» So, it is O(n?).
— Similar rules hold for multiplication.

L

DROP THE CONSTANTS

= When you're calculating the big O complexity of something, you just throw out the constants.
Like:

void printAllItemsTwice (int arr[], int size) volid printFirstItemThenFirstHalfThenSayH1100Times (int arr[], int size]

{ {

. i .) . printf ("First element of array = %d\n",arr[0]);
for {(int 1 = 0; 1 < size; 1+Ht)
{ for {(int i = 0; 1 < size/Z; i++)
printf ("%d\n", arr[il); {

printf ("&%d\n", arr[il);

for {(int 1 = 0; 1 € size; 1+HH)

{

for (int 1 = 0; 1 < 100
{

printf ("%d\n", arr([il); printf ("Hi\n");

This 1s O(2n), which we just call O(n). This is O(1 + n/2 + 100), which we just call O(n). @

DROP THE LESS SIGNIFICANT
TERMS

void printAllNumbersThenAllPairSums (int arr[], int size)

{
Here our runtime is O(n + n2), which we for (int i = 0; i < size; i+¥)
just call O(n2). {

printf ("%d\n", arr[il);

Similarly:
O(n3 + 5002 + 10000) 1s O(n3) for (int i = 0; i < size; i++)
O((n + 30) * (n + 5)) is O(n2) {
Again, we can get away with this because the for (int j = 0; J < size; j+¥)
less significant terms quickly become, well, {

less significant as n gets big; printf ("%d\n", arr[i]l + arrl[jl);

Remember,

for big O notation we're looking at what
happens as n gets arbitrarily large. As n
oets really big, adding 100 or dividing by 2
has a decreasingly significant effect.

WHAT TO ANALYZE

An algorithm can require different times to solve different
problems of the same size.

— Eg. Searching an item in a list of n elements using sequential search. =» Cost:

1.2...10
* Worst-Case Analysis —The maximum amount of time that an

algorithm require to solve a problem of size n.
— This gives an upper bound for the time complexity of an algorithm.
— Normally, we try to find worst-case behavior of an algorithm.

* Best-Case Analysis —The minimum amount of time that an
algorithm require to solve a problem of size n.
— The best case behavior of an algorithm 1s NOT so useful.

» Average-Case Analysis —The average amount of time that an
algorithm require to solve a problem of size n.
— Sometimes, it is difficult to find the average-case behavior of an algorithm.

— We have to look at all possible data organizations of a given size n, and their
distribution probabilities of these organizations.

— Worst-case analysis is more common than average-case analysis.

LINEAR SEARCH ALGORITHM

If Key =41
Then No of comparisons will be : 6

o 1 2 3 4 5 6 7 8
70 |40 |30 | 11 |57 |41 | 25| 14 | 52

Best Case : If the key element is present at the 1t index then it is the best case
Best Case Time =1 (as it will take constant time)
Complexity : O(1)

LINEAR SEARCH ALGORITHM

= Worst Case : Searching a key at last index (1.e. 52)

= Worst Case Time : O(n) O 1 2 3 4 5 6 7 8
70 (40 |30 | 11 |57 | 41 [25|14 ‘i’s’ii\

= Average Case : All possible case time / no of cases
14+2+3+4+5+6+7+8+9 / 9
1+2+3+........+n/n c 1 2 3 4 S5 6 7 8
(a(n+1) /2) / # 70 |40 |30 | 11 |57 |41 | 25|14 | 52

(n+1) /2
O(n)

BINARY SEARCH

Minimum No. of Comparison —> Best Case
Maximum No of Comparison -> Worst Case

2 3 4 5 6 7
24 | 29 ‘39 40

t

Search Element = 29

Array Size N = 8

BEST CASE :
Search Element is equal to the very first m=(L+R)/2
middle element. m=0+7/2

m=3
BEST CASE TIME = O(1)

Middle element = Search Element

L

BINARY SEARCH

= Array Size N = 8

= WORST CASE :

= Search Element 1s present at
either beginning of the array or
end of the array.

2

3 4

5

24

29‘39

40

Search Element = 10

t

15t Comparison
m=(L+R)/2
m=0+7/2

m=3

Middle element # Search Element

L

BINARY SEARCH

= Array Size N = 8

3 4 5 6 7

= WORST CASE :

29‘39 40 | 51 | 56

= Search Element 1s present at f f f

either beginning of the array or
end of the array. Search Element = 10
20d Comparison

m=(L+R)/2
m=0+2/2
m =1

Middle element # Search Element

L

BINARY SEARCH

= Array Size N = 8

= WORST CASE :

= Search Element 1s present at
either beginning of the array or
end of the array.

2

3 4

5

6 7

24

29‘39

40

51 | 56

Search Element = 10

3rd Comparison

m=(L+R)/2
m=0+0/2

m =0

Middle element = Search Element

L

BINARY SEARCH

= Array Size N = 8 3 & 5 5 7

29‘39 40 | 51 | 56

8/2! >4 =1 N/2k=1

= WORST CASE :
: 4/2->2 =2 8/22 >2 =2 N = 2k
= Search Element 1s present at 2/2->1 =3 8/23 >1 =3 log, N =k log, 2

either beginning of the array or
end of the array.

+ O (log; n)

k =1log, n

0 1 2 3 4 5 6 7 <€ anarray withsize 8
3 2 3 1 3 2 3 4 <« #ofiterations

The average # of iterations = 21/8 < log,8

¢
[

