& LECTURE 18

«” Graphs - EULER & HAMILTON




INTRODUCTION TO PATHS

=Many problems can be modeled with paths formed by
traveling along the edges of graphs.

=[For instance, the problem of determining whether a
message can be sent between two computers using
intermediate links can be studied with a graph model.

=Problems of efficiently planning routes for mail delivery,
garbage pickup, diagnostics in computer networks, and so
on can be solved using models that involve paths in

graphs.




WHAT IS A PATH?

= Informally, a path is a sequence of edges that begins at a vertex of a graph and travels
from vertex to vertex along edges of the graph.

= As the path travels along its edges, it visits the vertices along this path, that 1s, the
endpoints of these edges.

Let n be a nonnegative integer and G an undirected graph. A path of length n from u
to v in G is a sequence of n edges ei1,...,e, of G for which there exists a sequence
xXg = U, X1, ...,Xp_1, Xy = vofverticessuchthate; has, fori =1, ..., n, the endpoints x; _;
and x;. When the graph is simple, we denote this path by its vertex sequence xq, x1, ..., X,
(because listing these vertices uniquely determines the path). The path is a circuit if it begins
and ends at the same vertex, that is, if # = v, and has length greater than zero. The path or cir-
cuit is said to pass through the vertices x1, x2, ..., x,—1 or fraverse the edges e, e2, . . ., e,.
A path or circuit is simp/e if it does not contain the same edge more than once.

)



DEFINITION OF A PATH

Let n be a nonnegative integer and G a directed graph. A path of lengthn fromu tovin G isa
sequence of edges ¢1, €2, .. ., e, of G such that e is associated with (xg, x1), e is associated
with (x1, x2), and so on, with e,, associated with (x,_1, x,;), where xg = u and x,, = v. When

there are no multiple edges in the directed graph, this path is denoted by its vertex sequence
X0, X1, X2, - - ., Xp. A path of length greater than zero that begins and ends at the same vertex

is called a circuit or cvcle. A path or circuit is called s7mple if it does not contain the same
edge more than once.




EXAMPLE 1

= In the simple graph shown in Figure below; 4, 4, ¢, f, ¢ is a simple path of length 4,
because {4, d}, {d, ¢}, {¢ [ }, and {f ¢} are all edges. Howevet, d, ¢, ¢, a is not a path,
because {¢ ¢} is not an edge. Note that b, ¢, f, ¢, b is a simple circuit of length 4
because {4 ¢}, {6 [ }, 1) ¢}, and {¢ b} are edges, and this path begins and ends at .
The path a, b, ¢, d, a, b, which 1s of length 5, is not simple because it contains the edge
{a, b} twice.




EULER & HAMILTON PATHS

= Can we travel along the edges of a graph starting at a vertex and returning to
it by traversing each edge of the graph exactly once?

= Similarly, can we travel along the edges of a graph starting at a vertex and
returning to it while visiting each vertex of the graph exactly once?

= Although these questions seem to be similar, the first question, which asks
whether a graph has an Euler circuit.

= while the second question, which asks whether a graph has a Hamilton
circuit.




EULER PATHS & CIRCUITS

= An Euler circust in a graph G is a simple circuit containing every edge of G.
= An Euler path 1n G is a simple path containing every edge of G.

= An Euler circuit starts and ends at the same vertex.

= An Euler path starts and ends at different vertex.

= A connected multigraph with at least two vertices has an Euler circuit if and
only if each of its vertices has even degree.

= A connected multigraph has an Euler path but not an Euler circuit if and only
it 1t has exactly two vertices of odd degree.




EXAMPLE ?

= Which of the undirected graphs in Figure below have an Euler circuit? Of
those that do not, which have an Euler path?

a b i b i b

T




EXAMPILE ?

= Which of the undirected graphs in Figure below have an Euler circuit? Of
those that do not, which have an Euler path?

a b i b a b

fu ¢ d g
The graph G1 has an Euler circuit, for example, 4, ¢, ¢, 4, ¢, b, a.
Neither of the graphs G2 or G3 has an Euler circuit.

However, G3 has an Euler path, namely, 4, ¢, 4, ¢, 4, d, a, b.
G2 does not have an Euler path.




= Which of the directed graphs in Figure below have an Euler circuit? Of those
that do not, which have an Euler path?

Solution:

The graph H2 has an Euler circuit, : ; a b . ]
for example, 2, g, ¢, b, g, ¢, 4, |, a.

Neither H1 nor H3 has an FEuler D f c E
circuit.

H3 has an Euler path, namely, ¢ 4, g g e d 4 2

b, ¢, d, b, but H1 does not. H, H, Hy




EXAMPLE 4

= Which graphs shown in Figure below have an Euler path?

A7 %

G1 contains exactly two vertices of odd degree, namely, 4 and 4. Hence, it has an Euler
path that must have 4 and 4 as its endpoints. One such Euler path 1s 4, 4, 4, ¢, d, b.
Similarly, G2 has exactly two vertices of odd degree, namely, 4 and 4. So 1t has an Euler
path that must have / and 4 as endpoints. One such Euler pathis 4, 4, g, f, ¢, d, ¢, g, b, ¢ |,
d.

G3 has no Euler path because it has six vertices of odd degree.




HAMILTON PATHS & CIRCUITS

A simple path in a graph G that passes through every vertex exactly once is called a Hamilton

path, and a simple circuit in a graph G that passes through every vertex exactly once is called
a Hamilton circuit. That is, the simple path xg, x1, ..., x,_1, x, inthe graph G = (V, E)isa

Hamilton path if V = {xp, x1,....x,_1, x,} and x; &£ xjfor0 =i =< j = n, and the simple
circuit xg, Xy, ..., Xy—1. X, Xp (with n = 0) is a Hamilton circuit if xq, x1, ..., x,-1, X, is
a Hamilton path.

There are no known simple necessary and sufficient criteria for the existence of Hamilton circuits.
However, many theorems are known that give sufficient conditions for the existence of Hamilton
circuits. Also, certain properties can be used to show that a graph has no Hamilton circuit.

For instance, a graph with a vertex of degree one cannot have a Hamilton circuit, because in a Hamilton
circuit, each vertex is incident with two edges in the circuit. Moreover, if a vertex in the graph has

degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.
a Hamilton circuit cannot contain a smaller circuit within it.

L



EXAMPLE 5

= Which of the simple graphs in Figure have a Hamilton circuit or, if not, a

Hamilton path? a b a b a b g
L 2 3 o
= [ 9 L > & 9
d c d e e f
f_-'| &z GS

G1 has a Hamilton circuit: 4, 4, ¢, d, ¢, a.

There is no Hamilton circuit in G2 (this can be seen by noting that any circuit
containing every vertex must contain the edge {4, 4} twice), but G2 does have a
Hamilton path, namely, 4, 4, ¢, d.

G3 has neither a Hamilton circuit nor a Hamilton path, because any path containing

all vertices must contain one of the edges {4, b}, {¢ / }, and {¢ d} more than once. @



EXAMPLE 6

= Show that neither graph displayed in Figure has a Hamilton circuit.
a d e a d
U | [ I
b c b e

G H

There is no Hamilton circuit in G because G has a vertex of degree one,
namely, e.
Now consider H. It is easy to see that no Hamilton circuit can exist in H, for

any Hamilton circuit would have to contain four edges incident with ¢, which
is impossible.




HAMILTON VERSUS EULER

EXAMPLE 7

Q.
= The figure shows a graph that has A G" ’O B
= Euler circuits (the vertices are all even) ' DL
eg b, f,a,b,ead,ecd gc b and .
= Hamilton circuits e.g. ¢, ¢, g, d, a, f, b, e. D ,) Sk
._~O o
(:

©



EXAMPLE 8

= The figure shows a graph that

= has no Euler circuits but does have Euler paths (for example C, D, E, B, A,
D).

= It has no Hamilton circuits (sooner or later you have to go to C, and then
you are stuck) but does have Hamilton paths (for example, A, B, E, D, C).

A B

O




EXAMPLE 9

= The figure shows a graph that
= has neither Euler circuits nor paths (it has four odd vertices) and

= has Hamilton circuits (for example A, B, C, D, E, A - there are plenty more)




EXAMPLE 10

= The figure shows a graph that

= has no Euler circuits but has Euler paths (FF and G are the two odd
vertices) and

= has neither Hamilton circuits nor Hamilton paths.




EXAMPLE 11

= The figure shows a graph that
= has neither Euler circuits nor Euler paths (too many odd vertices) and

= has neither Hamilton circuits nor Hamilton paths.

F
AQ O\')B
E
D\ oC
G



PILANAR GRAPH

= Consider the problem of joining three houses to each of
three separate utilities, as shown in Figure. Is it possible to
join these houses and utilittes so that none of the
connections cross?

= In this section we will study the question of whether a
graph can be drawn in the plane without edges
crossing. In particular, we will answer the houses-and-
utilities problem.

= There are always many ways to represent a graph. When is it
possible to find at least one way to represent this graph in a
plane without any edges crossing?




PLANAR GRAPH

= A graph is called planar if it can be drawn in the plane without any edges
crossing (where a crossing of edges 1s the intersection of the lines or arcs
representing them at a point other than their common endpoint). Such a
drawing is called a planar representation of the graph.

= A graph may be planar even if it is usually drawn with crossings, because it
may be possible to draw it in a different way without crossings.




= Is K, shown in Figure (with two edges crossing) planar?

= K, 1s planar because it can be drawn without crossings.




= Draw a planar representation, if possible.

= Redrawing the positions of B and E, we get a planar representation of the graph

as in Figure.
A c
D F
©
()




= Draw a planar representation, if possible.
A " C
K,

(e)
Not possible because this graph is non-planar.




APPLICATIONS OF PLLANAR
GRAPHS

= Planarity of graphs plays an important role in the design of electronic circuits. We can model
a circuit with a graph by representing components of the circuit by vertices and connections
between them by edges. We can print a circuit on a single board with no connections crossing if
the graph representing the circuit is planar. When this graph is not planar, we must turn to more
expenstve options. For example, we can partition the vertices in the graph representing the
circuit into planar subgraphs. We then construct the circuit using multiple layers. We can
construct the circuit using insulated wires whenever connections cross. In this case, drawing the
graph with the fewest possible crossings is important.

= The planarity of graphs is also useful in the design of road networks. Suppose we want to
connect a group of cities by roads. We can model a road network connecting these cities using a
simple graph with vertices representing the cities and edges representing the highways
connecting them. We can built this road network without using underpasses or overpasses if the

resulting graph is planar.



EULER’S FORMULA

= A planar representation of a graph splits the plane into regions, including an
unbounded region.

= For instance, the planar representation of the graph shown in Figure splits the plane
into six regions as labeled.

= Fuler showed that all planar representations of a graph split the plane into the same
number of regions. He accomplished this by finding a relationship among the number
of regions, the number of vertices, and the number of edges of a planar graph.

* Let G be a connected planar simple graph with e edges
and v vertices. Let r be the number of regions in a
planar representation of G. Then

r=e—v+2 or v—e+r=2




EXAMPLE 15

= Suppose that a connected planar simple graph has 20 vertices, each of degree
3. Into how many regions does a representation of this planar graph split the
plane?

Solution:

= This graph has 20 vertices, each of degree 3, so » = 20.

= Because the sum of the degrees of the vertices, 3v =3 = 20 = 60, is equal to twice
the number of edges, 2¢, we have 2¢ = 60, or ¢ = 30.

= Consequently, from Euler’s formula, the number of regions is

r=e—p+2=30—20+2=12.




= Count the number |7 of vertices, the number E of edges, and the number R
of regions of the graphs below and verify Euler’s formula.

(a) (&) (€)




EXAMPLE 16

= Count the number I of vertices, the number £ of edges, and the number R

of regions of the graphs below and verify FEuler’s formula.
R=E—-V+2 je V-E+R=2

() V=4 FE=6,R=4.Hence V- E+R=4-06+4=2.
b)1"=6,E=9, R=5Hence VM= E+R=6—-9+5=2
ol7=5E=10,R=7.Hence = E+R=5-10+7=2.

(a) (b) (e)

()



APPLICATIONS OF
HAMILTON CIRCUITS

= Hamilton paths and circuits can be used to solve practical problems.

= For example, many applications ask for a path or circuit that visits each road

intersection 1n a city, each place pipelines intersect in a utility grid, or each node
in a communications network exactly once.

= Finding a Hamilton path or circuit in the appropriate graph model can solve
such problems. The famous traveling salesperson problem or TSP (also known
in older literature as the traveling salesman problem) asks for the shortest route
a traveling salesperson should take to visit a set of cities.

o



APPLICATIONS OF EULER
PATHS AND CIRCUITS

= BEuler paths and circuits can be used to solve many practical problems. For
example:

= Many applications ask for a path or circuit that traverses each street in a
neighborhood, each road in a transportation network, each connection in a
utility grid, or each link in a communications network exactly once.

= Among the other areas where Euler circuits and paths are applied is:

= The layout of circuits, in network multicasting, and in molecular biology,
where Fuler paths are used in the sequencing of DNA.

o
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