
Polymorphism

Session Objectives
 Polymorphism and its Pre-requirements.

 Dynamic binding.

 Polymorphic Function.

 Accessing methods and field.

 Virtual methods in Java.

 Class pointers in C++.

 Polymorphism in C#.

 Dynamic v/s Static binding.

Polymorphism

 Polymorphism comes from Greek meaning “many forms.”

 There are three basic types of polymorphism

1. Ad hoc polymorphism [Method Overloading]

2. Parametric polymorphism [Template or Generic Type]

3. Subtyping [Method Overriding]

 In Java, polymorphism refers to the dynamic binding
mechanism that determines which method definition will be
used when a method name has been overridden.

 Thus, polymorphism refers to dynamic binding.

Late Binding/Dynamic Binding
 Late binding or dynamic binding (run-time binding):

 Method to be executed is determined at execution time,
not compile time

 Polymorphism: to assign multiple meanings to the same
method name

 Implemented using late binding

 Method overloading is resolved by the compiler (early
binding/static binding)

Polymorphic Function
 A Polymorphic function is one that has the same name for

different classes of the same family, but has different
implementations/behaviour for the various classes.

 In other words, polymorphism means sending the same
message (invoke/call member function) to different objects
of different classes in a hierarchy

Polymorphism and Method Overriding

Polymorphism is nothing but the ability of methods

taking more than one form

Method overriding is one of the way to implement Polymorphism

in object oriented technology

Measuring Area of all these objects

Cont….
 There are 3 pre-requisite before we can apply

polymorphism:

1. Having a hierarchy of classes/implementing inheritance

2. Having functions with same signatures in that hierarchy of
classes, but each function in each class is having different
implementation (function definition)

3. Would like to use base-class pointer that points to objects
in that hierarchy

Polymorphism [Methods & Fields]
 An object of a given class can have multiple forms: either as its

declared class type, or as any subclass of it

 An object of an extended class can be used wherever the
original class is used

 Question: given the fact that an object’s actual class type may
be different from its declared type, then when a method
accesses an object’s member which gets redefined in a subclass,
then which member the method refers to (subclass’s or super
class's)?

 When you invoke a method through an object reference, the
actual class of the object decides which implementation is used.

 When you access a field, the declared type of the reference
decides which field to access.

Example
class SuperShow {

public String str = “SuperStr”;

public void show() {
System.out.println(“Super.show:” + str);

}
}

class ExtendShow extends SuperShow {
public String str = “ExtendedStr”;

public void show() {
System.out.println(“Extend.show:” + str);

}

public static void main (String[] args) {
ExtendShow ext = new ExtendShow();
SuperShow sup = ext;
sup.show();
ext.show();
System.out.println(“sup.str = “ + sup.str);
System.out.println(“ext.str = “ + ext.str);

}
}

Output:

Extend.show: ExtendStr
Extend.show: ExtendStr
sup.str = SuperStr
ext.str = ExtendStr

Virtual methods in Java

 In Java, all non-static methods are by default "virtual
functions."

 Only methods marked with the keyword final, which cannot be
overridden, along with private methods, which are not
inherited, are non-virtual.

Pointers in classes
C++ Example C# & Java Example

void main()
{

Manager mgr;
Employee* emp = &mgr;
//valid: every Manager is an
Employee

Employee emp1;
Manager* man = &emp1;
//error: not every Employee
is a Manager

}

void main()

{

Employee emp = new Manager();

//valid: every Manager is an Employee

Manager man = new Employee();

//error: not every Employee is a
Manager

}

Method Overriding [using new]
 To override an existing method of the base class:

 Declare a new method in the inherited class of the same
name.

 Prefix it with the new keyword.

Method Overriding [using new]

Cont….

Driver from A

Method Overriding [using virtual & override]

 In C# & C++ Polymorphism is achieved using
virtual methods.

virtual return_type functionName(argument list);

Method Overriding [using virtual & override]

Driver from B

Polymorphism in C#

 In C# & C++ Polymorphism is achieved using virtual methods.

 Polymorphism allows us to implement the derived class
methods during runtime.

 virtual -> override
 non-virtual -> redefine

Polymorphism in C#

 Virtual functions come in handy when we need to call the
derived class method from an object of the base class.

Polymorphism in C#

Polymorphism in C#

Polymorphism in C#

24

Static binding Dynamic binding
 Static binding means that

the legality of a member
function invocation is
checked at the earliest
possible moment: by the
compiler at compile time.

 The compiler uses the
static type of the pointer to
determine whether the
member function
invocation is legal.

 Dynamic binding means that
the legality of a member
function invocation is
determined at the last
possible moment: based on
the dynamic type of the
object at run time.

 It is called "dynamic binding"
because the binding to the
code that actually gets called
is accomplished dynamically
(at run time).

Polymorphic Pointers
 A reference of a parent class is allowed to point to an object

of the child class. E.g.

class Vehicle {
// ...

}
class Car : Vehicle {

// ...
}
// ...

Vehicle vp = new Car();

Overriding Methods
 Methods in the parent class can be redefined in the child

class.

class Vehicle {

void move(int i){....}

}

class Car : public Vehicle {

void move(int i) {....}

}

// ...

Vehicle vp = new Car();

vp.move(100);

Overriding Methods
 Methods in the parent class can be redefined in the child

class.

BUT:

 Which of these two
move() methods will
be called?

class Vehicle {
void move(int i){...}

}
class Car : public Vehicle {

void move(int i){...}
}
// ...

Vehicle vp = new Car();
vp.move(100);

Overriding Methods
 Methods in the parent class can be redefined in the child

class.

static binding

class Vehicle {
void move(int i){.....}

}
class Car : public Vehicle {

void move(int i){......}
}
// ...

Vehicle vp = new Car();
vp.move(100);

Overriding Methods
 Methods in the parent class can be redefined in the child

class.

dynamic binding

class Vehicle {
void move(int i){.....}

}
class Car : Vehicle {

void move(int i){......}
}
// ...

Vehicle vp = new Car();
vp.move(100);

Overriding Methods
 Methods in the parent class can be redefined in the child

class.
static binding!
 Without virtual keyword

As vp is of type pointer to a Vehicle, the

method of the Vehicle is called.

class Vehicle {
void move(int i){.....}

}
class Car : Vehicle {

new void move(int i){......}
}
// ...

Vehicle vp = new Car();
vp.move(100);

Overriding Methods -The virtual keyword

 Methods in the parent class can be redefined in the child
class.

dynamic binding!

The keyword virtual
allows the use of
dynamic binding.

As vp points to a Car object the
method of the Car is called

class Vehicle {
virtual void move(int i){.....}

}
class Car : Vehicle {

override void move(int i){......}
}
// ...

Vehicle vp = new Car();
vp.move(100);

Advantage of Polymorphism [Software Extension]

 Polymorphism promotes extensibility: Software that invokes
polymorphic behavior is independent of the object types to
which messages are sent.

 New object types that can respond to existing method calls
can be incorporated into a system without requiring
modification of the base system.

 Only client code that instantiates new objects must be
modified to accommodate new types.

 It allows system to evolve over time, meeting the needs of a
ever-changing application

	Session - 8
	Session Objectives
	Polymorphism
	Late Binding/Dynamic Binding
	Polymorphic Function
	Polymorphism and Method Overriding
	Cont….
	Polymorphism [Methods & Fields]
	Example
	Virtual methods in Java
	Pointer example in c++
	Pointers in classes
	Polymorphism in C#
	Method Overriding [using new]
	Method Overriding [using new]
	Cont….
	Method Overriding [using virtual & override]
	Method Overriding [using virtual & override]
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Static binding Dynamic binding
	Example Static / Dynamic
	Polymorphic Pointers
	Overriding Methods
	Overriding Methods
	Overriding Methods
	Overriding Methods
	Overriding Methods
	Overriding Methods -The virtual keyword
	Advantage of Polymorphism [Software Extension]

