
Serialization in JAVA

Storing Objects/Structures in Files
 Many programs need to save information between

program runs

 Alternately, we may want one program to save
information for later use by another program

Serialization of Objects
 Java provides a way to save objects directly

 Saving an object with this approach is called serializing the object

 Serialization in other languages can be very difficult, because objects
may contain references to other objects. Java makes serialization
(almost) easy

 Any object that you plan to serialize must implement the
Serializable interface

Conditions for serializability
 If an object is to be serialized:

 The class must be declared as public

 The class must implement Serializable

 If the object is a sub type of another class, the parent
class must have a no-argument constructor

 All fields of the class must be serializable: either
primitive types or serializable objects

Implementing Serializable
 To “implement” an interface means to define all the methods declared

by that interface, but...

 The Serializable interface does not define any methods!

 Question: What possible use is there for an interface that
does not declare any methods?

 Answer: Serializable is used as flag to tell Java it
needs to do extra work with this class

 When an object implements Serializable, its state is
converted to a byte stream to be written to a file so
that the byte stream can be converted back into a
copy of the object when it is read from the file.

The Serializable Interface
 The Serializable interface is a marker interface.

 It has no methods, so you don't need to add additional

code in your class except that the class must implement

Serializable.

 You must also import java io which contains all the

streams needed.

The Object Streams
• You need to use the ObjectOutputStream class for

storing objects and the ObjectInputStream class for

restoring objects.

• These two classes are built upon several other classes.

A Serializable Version of a Circle Class

A Program to Save a SCircle Object

Cont….
public class FlightRecord2 implements Serializable

{

private String flightNumber; // ex. = AA123
private String origin; // origin airport; ex. = Khi
private String destination; // destination airport; ex. = Isl
private int numPassengers; // number of passengers
private double avgTicketPrice; // average ticket price

// Constructor

public FlightRecord2 (String startFlightNumber, String startOrigin, String
startDestination, int startNumPassengers, double startAvgTicketPrice)
{
flightNumber = startFlightNumber;

origin = startOrigin;
destination = startDestination;

numPassengers = startNumPassengers;
avgTicketPrice = startAvgTicketPrice;

}

Flight Record class

public String toString()
{
return "Flight " + flightNumber

+ ": from " + origin
+ " to " + destination
+ "\n\t" + numPassengers + " passengers";

}
// accessors, mutators, and other methods …

}

import java.io;

public class WritingObjects
{

public static void main(String [] args)
{
// instantiate the objects
FlightRecord2 fr1 = new FlightRecord2("AA31", “Khi", “Lhr",200, 13500);
FlightRecord2 fr2 = new FlightRecord2("CO25", “Lhr", “Isl",225, 11500);
FlightRecord2 fr3 = new FlightRecord2("US57", “Khi", “Isl"175, 17500);

try
{ FileOutputStream fos = new FileOutputStream(objects.dat);

ObjectOutputStream oos = new ObjectOutputStream(fos);

// write the objects to the file
oos.writeObject(fr1);
oos.writeObject(fr2);
oos.writeObject(fr3);

// release resources associated with the objects file
oos.close();

}

catch(FileNotFoundException e)
{

System.out.println("Unable to write to objects");
}
catch(IOException e)
{

ioe.printStackTrace();

}

}

}

Saving Hierarchical Objects
 Ensure that each of the objects involved implements the Serializable

interface

import java.io*;

public class SPoint implements Serializable

{

public int xValue; // this is for example only

public int yValue;

}

import java.io*;

public class SNewCircle implements Serializable

{

public SPoint location;

public float radius;

public boolean soldi;

}

// initialize location’s xValue and yValue

Reading Objects from a file
 ObjectInputStream reads objects from a file. The

readObject() method reads the next object from the file

and returns it.

 Because it returns a generic object, the returned object

must be cast to the appropriate class.

 When the end of file is reached, it throws an

EOFException versus when reading from a text file

where a null String is returned.

Reading objects from a file
ObjectInputStream objectIn = new

ObjectInputStream(new BufferedInputStream(

new FileInputStream(fileName)));

myObject = (itsType) objectIn.readObject();

// some code

objectIn.close();

import java.io.;

public class GetCircle

{

public static void main(String [] args)
{
SCircle s2 = new SCircle();

ObjectInputStream in =new ObjectInputStream(new

BufferedInputStream(new FileInputStream(Objects.dat)));
try {

s2 = (SCircle) in.readObject();

}

catch (Exception e) { System.out.println (“ Error in reading “ + e)

}

System.out.println(“ The value of xvalue is “ + s2.xValue;

System.out.println(“ The value of yvalue is “ + s2.yValue;

}

in.close();

}

import java.io.ObjectInputStream;

public class ReadingObjects
{
public static void main(String [] args)
{
try
{

FileInputStream fis = new FileInputStream(objects.dat);
ObjectInputStream ois = new ObjectInputStream(fis);
try
{
while (true)
{

// read object, type cast returned object to FlightRecord
FlightRecord2 temp = (FlightRecord2) ois.readObject();
// print the FlightRecord2 object read
System.out.println(temp);

}
} // end inner try block
catch(EOFException eofe)
{
System.out.println("End of the file reached");
}

catch(ClassNotFoundException e)
{
System.out.println(cnfe.getMessage());

}
finally
{

System.out.println("Closing file");
ois.close();

}
} // end outer try block
catch(FileNotFoundException e)
{

System.out.println("Unable to find objects");
}
catch(IOException ioe)
{

ioe.printStackTrace();
}

}
}

Reading Objects from a file.
 The while loop runs until the end of file is reached and an

exception is thrown

 Control goes to the catch block and will always execute in

a normal program run.

 The EOFException catch block must come before

IOException as it is subclass of IOException. Otherwise

the program will not produce the correct stack trace.

Output from reading objects
----jGRASP exec: java ReadingObjects

Flight AA31: from Khi to Lhr
200 passengers; average ticket price: 13500

Flight CO25: from Lhr to Isl
225 passengers; average ticket price: 11500

Flight US57: from Khi to Isl
175 passengers; average ticket price: 17500

End of the file reached // EOF exception caught
Closing file

21

Example-Serialization
public class Employee implements java.io.Serializable
{

public String name;
public String address;
public transient int SSN;
public int number;

public void mailCheck()
{

System.out.println("Mailing a check to " + name + " " + address);
}

}

Cont….
import java.io.*;

public class SerializeDemo

{

public static void main(String [] args)

{

Employee e = new Employee();

e.name = “Muhammad Shafan";

e.address = “DHA, Karachi";

e.SSN = 11122333;

e.number = 101;

try

{

FileOutputStream fileOut = new FileOutputStream("/tmp/employee.ser");

ObjectOutputStream out = new ObjectOutputStream(fileOut);

out.writeObject(e);
out.close();

fileOut.close();

System.out.println("Serialized data is saved in /tmp/employee.ser");

}catch(IOException i)

{

i.printStackTrace();

}

}

}

Example-Deserialization
import java.io.*;

public class DeserializeDemo

{

public static void main(String [] args)

{

Employee e = null;

try

{

FileInputStream fileIn = new
FileInputStream("/tmp/employee.ser");

ObjectInputStream in = new
ObjectInputStream(fileIn);

e = (Employee) in.readObject();

in.close();

fileIn.close();
}

catch(IOException i)
{

i.printStackTrace();
return;

}
catch(ClassNotFoundException c)

{
System.out.println("Employee class not found");
c.printStackTrace();
return;

}
System.out.println("Deserialized Employee...");
System.out.println("Name: " + e.name);
System.out.println("Address: " + e.address);
System.out.println("SSN: " + e.SSN);
System.out.println("Number: " + e.number);

}
}

