

S . S

e
Storing Objects/Structures in Files

Many programs need to save information between
program runs

Alternately, we may want one program to save
information for later use by another program

/‘-

|
Serialization of Objects

Java provides a way to save objects directly
Saving an object with this approach is called the object

in other languages can be very difficult, because objects
may contain references to other objects. Java makes serialization
(almost) easy

Any object that you plan to serialize must implement the

Conditions for serializability

If an object is to be serialized:

e The class must be declared as public
e The class must implement

e If the object is a sub type of another class, the parent
class must have a no-argument constructor

e All fields of the class must be : either
primitive types or objects

AR et

et
Implementing

To “implement” an interface means to define all the methods declared
by that interface, but...

The interface does not define any methods!

e Question: What possible use is there for an interface that
does not declare any methods?

e Answer: is used as flag to tell Java it
needs to do extra work with this class

e When an object implements its state is
converted to a byte stream to be written to a file so
that the byte stream can be converted back into a
copy of the object when it is read from the file.

/

he Serializable Interface
The Interface Is a marker interface.

It has no methods, so you don't need to add additional
code in your class except that the class must implement

You must also import java 1o which contains all the
streams needed.

" The Object Streams |

You need to use the ObjectOutputStream class for
storing objects and the ObjectInputStream class for
restoring objects.

These two classes are built upon several other classes.

A Serializable Version of a Circle Class

mgram to

Save a SCircle Object

{

publie static void main(String[] args) throws IOException

d

el
el
ed .
el

import java.ie.*;
import ch09.circles.*;

public class SaveSCirecle

SCirele ¢l = new SCircle():
.xValtue = 5;

yvalue = 3;

radius = 3.5f;
.s80lid = true;

ObjectOutputStream out = new ObjectOutputStream(new

out.writeObject (cl)s

out.cloge():

FileOutputStream("objects.dat™));

/’ —

Cont....

public class FlightRecord2 implements Serializable

{

private String flightNumber; // ex. = AA123

private String origin; /[origin airport; ex. = Khi
private String destination; // destination airport; ex. = Isl
private int numPassengers; // number of passengers
private double avgTicketPrice; // average ticket price

/I Constructor

public FlightRecord?2 (String startFlightNumber, String startOrigin, String
startDestination, int startNumPassengers, double startAvgTicketPrice)

flightNumber = startFlightNumber;

origin = startOrigin;
destination = startDestination:;

numPassengers = startNumPassengers;
avgTicketPrice = startAvgTicketPrice;

}

/

Flight Record class

public String toString()

return Fllght + flightNumber
from + origin
+ 'to " + destination

+ "\n\t" + numPassengers + " passengers";

}

/] accessors, mutators, and other methods ...

}

import java.io;

public class WritingObjects

public static void main(String [] args)

{

FlightRecord2 fr1 = new FlightRecord2("AA31", “Khi", “Lhr",200, 13500);
FlightRecord2 fr2 = new FlightRecord2('""CO25", “Lhr", “Isl",225, 11500);
FlightRecord2 fr3 = new FlightRecord2("US57", “Khi", “Isl"'175, 17500);

try
{ FileOutputStream fos = new FileOutputStream(objects.dat);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(frl);
oos.writeObject(fr2);
oos.writeObject(fr3);

oos.close();

}

catch(FileNotFoundException e)
{

System.out.printin("*Unable to write to objects');

}
catch(IOException e)

{

loe.printStackTrace();

Saving Hierarchical Objects

Ensure that each of the objects involved implements the
interface

import java.io*;

public class SPoint implements Serializable

{
public int xValue; // this is for example only
public int yValue;

}

import java.io*;

public class SNewCircle implements Serializable

{

public SPoint location;

public float radius;

public boolean soldi;

}

// initialize location’s xValue and yValue

/ P

Reading Objects from a file

ObjectinputStream reads objects from a file. The
readODbject() method reads the next object from the file
and returns It.

Because It returns a generic object, the returned object
must be cast to the appropriate class.

When the end of file is reached, it throws an
EOFEXxception versus when reading from a text file
where a null String is returned.

Reading objects from a file

ObjectinputStream objectin = new
ObjectinputStream(new BufferedinputStream(
new FilelnputStream(fileName)));

myObject = (itsType) objectin.readObject();
// some code

objectin.close();

import java.io.;

public class GetCircle

{

public static void main(String [] args)

{
SCircle s2 = new SCircle();
ObjectInputStream in =new ObjectinputStream(new
BufferedlnputStream(new FilelnputStream(Objects.dat)));

try {
s2 = (SCircle) in.readObject();
}
catch (Exception e) { System.out.println (“ Error in reading “ + e)
}

System.out.printin(“ The value of xvalue is “ + s2.xValue;
System.out.printin(“ The value of yvalue is “ + s2.yValue;

}

in.close();

y

/

import java.io.ObjectInputStream;

public class ReadingObjects
{

public static void main(String [] args)

{
try
{

FileInputStream fis = new FileInputStream(objects.dat);
ObjectInputStream ois = new ObjectInputStream(fis);

try

while (true)

{
FlightRecordz temp = (FlightRecord2) ois.readObject();

System.out.println(temp);

}
}
catch(EOFException eofe)
{

System.out.println("End of the file reached");

/’ —

catch(ClassNotFoundException e)

{

System.out.println(cnfe.getMessage());

}
finally

{
System.out.println("Closing file");
ois.close();

}
}

catch(FileNotFoundException e)

{

System.out.println("Unable to find objects");

}

catch(IOException ioe)

{
ioe.printStackTrace();
}
}
}

/ e

=

Reading Objects from a file.

The while loop runs until the end of file is reached and an
exception Is thrown

Control goes to the catch block and will always execute in
a normal program run.

The EOFEXxception catch block must come before
|OEXception as it Is subclass of IOException. Otherwise
the program will not produce the correct stack trace.

/ e)

Output from reading objects
----jGRASP exec: java ReadingObjects

Flight AA31: from Khi to Lhr

200 passengers; average ticket price: 13500
Flight CO25: from Lhr to Isl

225 passengers; average ticket price: 11500
Flight US57: from Khi to Isl

175 passengers; average ticket price: 17500

End of the file reached // EOF exception caught
Closing file

21

/

Example-Serialization

public class Employee implements java.io.Serializable

{
public String name;
public String address;
public transient int SSN;
public int number;

public void mailCheck()
{

System.out.println("Mailing a check to " + name +

J

mum

+ address);

j

i _

/Cont....

import java.io.*;
public class SerializeDemo
{
public static void main(String [] args)
{
Employee e = new Employee();
e.name = “‘Muhammad Shafan";
e.address = “DHA, Karachi";
e.SSN = 11122333;
e.number = 101;
try
{

FileOutputStream fileOut = new FileOutputStream("/tmp/employee.ser");
ObjectOutputStream out = new ObjectOutputStream(fileOut);
out.writeObject(e);

out.close();
fileOut.close();
System.out.println("Serialized data is saved in /tmp/employee.ser”);

}catch(IOException i)

{
i.printStackTrace();

}

}
}

E le-D lalizati
import java.io.*; catch(IOException i)
public class DeserializeDemo {
{ i.printStackTrace();
public static void main(String [] args)) Letiiny
{ catch(ClassNotFoundException c)
Employee e = null; {
try System.out.println("Employee class not found");
{ c.printStackTrace();

FileInputStream fileIn = new
FileInputStream("/tmp/employee.ser");

ObjectInputStream in = new
ObjectInputStream(fileIn);

e = (Employee) in.readObject();
in.close();
fileIn.close();

return;
}
System.out.println("Deserialized Employee...");
System.out.println("Name: " + e.name);
System.out.println("Address: " + e.address);
System.out.println("SSN: " + e.SSN);
System.out.println("Number: " + e.number);

