
Session 3

The Object Oriented Approach -I
 Object oriented programming grew in the 70’s as a solution

to the problems of structured programming

 Models human thought process as closely as possible

 Deals with data and procedures that operate on data as a
single ‘object’

The Object Oriented Approach - II
All around us in the real world
are objects.

Each object has certain
characteristics and exhibits
certain behaviour

The Object-Oriented Approach - III

Personnel
Accounts Sales

The real world around is full of objects .We can consider both living
beings as well as things as objects.For example,the different
departments in a company are objects.

Drawbacks of Traditional Programming

The drawbacks of Traditional Programming are:

 Unmanageable programs

 Problems in modification of data

 Difficulty in implementation

6

Why do we care about objects?
 Modularity - large software projects can be split

up in smaller pieces.

 Reuseability - Programs can be assembled from
pre-written software components.

 Extensibility - New software components can be
written or developed from existing ones.

Object – Oriented Programming

Accounts

Data

Employee details

Salary statements

Bills

Vouchers

Reciepts

Functions

Calculate salary

Pay salary

Pay bills

Tally accounts

Transact with banks

Here the application has to implement the entities as they are seen
in real life and associate actions and attributes with each.

Object Oriented Approach
Problem
Identification Analysis

Design

Development

Testing

Implementation

Maintenance

Object Oriented Techniques

Object Oriented Techniques

OOA

OOD

OOP

Object Oriented Analysis

Model of the
problem

OOA is the phase if any project during which a precise and concise model of the
problem in terms of real world objects and concepts as understood by the user is
developed

Object Oriented Design

Programs

OOD is the phase in which programs are
organized as cooperative collection of
objects , each of which represents an
instance of a class, and whose classes are
all members of a hierarchy of classes
united via inheritance relationship

Objects

Object Oriented Programming

AccountsData:

•No. of employees
•Salary statements
•Bills
•Vouchers
•Receipts
•Petty cash records
•Banking data

Functions:

•Calculate salary
•Pay salary
•Pay bills
•Tally accounts
•Transact with

banks

OOP (Object oriented Programming) is the construction phase of the life cycle that
Object-Oriented Techniques follows

Code & Data

Object

Basic Object Oriented Concepts
 Object

 Helps to understand the real world

 Provides a practical basis for computer applications

 Class
 Describes a set of related objects

 Property
 A characteristic of an object – also called attribute

 Method
 An action performed by an object

Object-Oriented Programming

Early computers were

far less complex than

computers are today.

Their memories were

smaller and their programs

were much simpler.

Object-Oriented Programming

They usually executed only

one program at a time.

Object-Oriented Programming

Modern computers are

smaller, but far more complex

than early computers.

They can execute many

programs at the same time.

Object-Oriented Programming

Computer scientists have

introduced the notion of

objects and object-

oriented programming to

help manage the growing

complexity of modern

computers.

Object-Oriented Programming

An object is anything that can be represented by

data in a computer’s memory and manipulated by a

computer program.

Object-Oriented Programming

An object is anything that can be represented by

data in a computer’s memory and manipulated by a

computer program.

Numbers

Object-Oriented Programming

An object is anything that can be represented by

data in a computer’s memory and manipulated by a

computer program.

Text

Object-Oriented Programming

An object is anything that can be represented by

data in a computer’s memory and manipulated by a

computer program.

Pictures

Object-Oriented Programming
An object is anything that can be represented by data in a

computer’s memory and manipulated by a computer

program.

Sound

Object-Oriented Programming
An object is anything that can be represented by data in a

computer’s memory and manipulated by a computer

program.

Video

Object-Oriented Programming
An object is anything that can be represented by data.

Object-Oriented Programming

An object can be something in

the physical world or even just an

abstract idea.

An airplane, for example, is a

physical object that can be

manipulated by a computer.

Object-Oriented Programming

An object can be something in

the physical world or even just an

abstract idea.

A bank transaction is an example

of an object that is not physical.

Object-Oriented Programming

To a computer, an object is

simply something that can

be represented by data in the

computer’s memory and

manipulated by computer

programs.

Object-Oriented Programming

The data that represent the

object are organized into a

set of properties.

The values stored in an

object’s properties at any one

time form the state

of an object.

Name: PA 3794

Owner: Pakistan International Airline

Location: 39 52′ 06″ N 75 13′ 52″ W

Heading: 271°

Altitude: 19 m

AirSpeed: 0

Make: Boeing

Model: 737

Weight: 32,820 kg

Fields – Declaration
 Field Declaration

 a type name followed by the field name, and optionally
an initialization clause

 primitive data type vs. Object reference
 boolean, char, byte, short, int, long, float, double

 field declarations can be preceded by different
modifiers
 access control modifiers

 static

 final

More about field modifiers (1)
 Access control modifiers

 private: private members are accessible only in the class
itself

 package: package members are accessible in classes in
the same package and the class itself

 protected: protected members are accessible in classes
in the same package, in subclasses of the class, and in
the class itself

 public: public members are accessible anywhere the
class is accessible

public class Pencil {

public String color = “red”;

public int length;

public float diameter;

private float price;

public static long nextID = 0;

public void setPrice (float newPrice) {

price = newPrice;

}

}

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

p1.price = 0.5f;

}

}

Pencil.java

CreatePencil.java

%> javac Pencil.java

%> javac CreatePencil.java

CreatePencil.java:4: price has private access in Pencil

p1.price = 0.5f;

^

More about field modifiers (2)
 static

 only one copy of the static field exists, shared by all objects of this
class

 can be accessed directly in the class itself

 access from outside the class must be preceded by the class name as
follows

System.out.println(Pencil.nextID);

or via an object belonging to the class

 from outside the class, non-static fields must be accessed through
an object reference

public class CreatePencil {

public static void main (String args[]){

Pencil p1 = new Pencil();

Pencil.nextID++;

System.out.println(p1.nextID);

//Result?

Pencil p2 = new Pencil();

Pencil.nextID++;

System.out.println(p2.nextID);

//Result?

System.out.println(p1.nextID);

//Result?

}
}

1

still 2!

2

Note: this code is only for the purpose of showing the usage of static
fields. It has POOR design!

More about field modifiers (3)
 final

 once initialized, the value cannot be changed

 often be used to define named constants

 static final fields must be initialized when the class is
initialized

 non-static final fields must be initialized when an object
of the class is constructed

Object-Oriented Programming

Computer programs implement

algorithms that manipulate the

data.

In object-oriented programming,

the programs that manipulate

the properties of an object are

the object’s methods.

Object-Oriented Programming

We can think of an object as

a collection of properties and

the methods that are used to

manipulate those properties.

Properties

Methods

Methods – Declaration
 Method declaration: two parts

1. method header
 consists of modifiers (optional), return type, method name,

parameter list and a throws clause (optional)
 types of modifiers

 access control modifiers
 abstract

 the method body is empty. E.g.

abstract void sampleMethod();

 static
 represent the whole class, no a specific object
 can only access static fields and other static methods of the same class

 final
 cannot be overridden in subclasses

2. method body

Calling Methods

Object Object

Communication

Program

Object

Methods

Communication

Methods

Methods – Invocation
 Method invocations

 invoked as operations on objects/classes using the dot (.) operator

reference.method(arguments)

 static method:

 Outside of the class: “reference” can either be the class name or an
object reference belonging to the class

 Inside the class: “reference” can be ommitted

 non-static method:

 “reference” must be an object reference

Calling methods
A method is always called to act on a specific
object, not on the class in general

S1.setdate(27,1,1969)Example:

The general syntax for accessing a member
function of a class is

Syntax: Class.object.method()

Passing Parameters

Passing
Parameters

Call by value
Call by reference

{

day=d;

year=y;

month=m;

}

void setDate(int m,int d,int y)

Formal
parameter

Call by Value
/* Example of Call by Value */

class Test {

void change(int m,int n)

{

m = m * 2;

n = n + 3;

System.out.println(“The value of m = “+ m + “ and

the value of n = “+n);

}

public static void main(String args[])

{

Test S1;

S1=new Test();

int a=10, b=12;

System.out.println(“Before : The value of a = “ +a +“ and the

value of b = “ + b);

S1.change(a,b);

System.out.println(“After : The value of a = “ +a + “ and the

value of b = “ + b);

}

}

Call by Reference
class Test {

int m,n;

Test() {

m=10;

n=20;

}

void change(Test T1) {

T1.m = T1.m * 2;

T1.n = T1.n + 3;

}

public static void main(String args[]) {

Test S1 = new Test();

Test S2 = S1; //assigning reference of object S1 to S2

System.out.println("Before : The value of m = "+S1.m + "and the

value of n = " + S1.n);

S1.change(S2);

System.out.println("After : The value of m = "+ S1.m + " and the

value of n = " + S1.n);

}

}

Returning object from a method
A return statement in a function is considered to
initialize a variable of the returned type

Syntax: Test testobjectS1.func()

test func ()

{

test temp_object;

.

.

return temp_object;

}

Accessor Functions
Usually the data member are defined in

private part of a class – information hiding

Accessor functions are functions that are
used to access these private data members

Accessor functions also useful in reducing
error

Example – Accessing Data Member
class Student{

…

private int semester;

public void setRollNo(int aSem){

if((aSem<1)||(aSem>8))

System.out.println(“Invalid Semester”);

else

semester = aSem;

}

public int getCurrentSem()

{

return semester;

}

}

Object-Oriented Programming

A class is a group of

objects with the same

properties and the same

methods.

Object-Oriented Programming

Each copy of an object
from a particular class is
called an instance of the
object.

Object-Oriented Programming

The act of creating a

new instance of an object

is called instantiation.

Object-Oriented Programming

A class can be thought of

as a blueprint for

instances of an object.

Object-Oriented Programming

Two different instances of

the same class will have the

same properties, but

different values stored in

those properties.

Using the Class

class Sdate {

int month, day, year;

void setDate(int m,int d,int y)

{

month=m;

day=d;

year=y;

}

public static void main(String args[])

{

Sdate S1,S2;

S1=new Sdate();

S2=new Sdate();

S1.setdate(11,27,1967);

S2.setdate(4,3,1969);

}

}

Defining Objects

Statement Effect

Sdate S1;

S1

S1 = new Sdate();

S1

Sdate S2 = new Sdate();
S1 object

S2

S2 object

Null

Month (11)

Day (27)

Year (1967)

Month (4)

Day (3)

Year (1969)

Object Reference

S1
New
operator

Physical
location of
data

Points to
create

S1

S2

class Sdate{

………….

……….

Sdate S1 = new Sdate();

Sdate S2 = S1;

………..

}

Class
 A Class defines an entity in terms of common

characteristics and actions

Class Customer

Name of the customer

Address of the customer

Model of the car bought

Salesman’s name who sold the car

Accept Name

Accept Address

Accept Model of the car purchased

Accept the name of the salesman who sold the car

Generate the bill

Messages

 Objects communicate through messages

 They send messages (stimuli) by invoking appropriate

operations on the target object

 The number and kind of messages that can be sent to an

object depends upon its interface

Examples – Messages

 A Person sends message (stimulus) “stop” to a Car by

applying brakes

 A Person sends message “place call” to a Phone by

pressing appropriate button

Object
 Attribute

 Characteristic that describes an object

 Operation

 Service that can be requested of an object

 Method

 Specification of how the requested operation is carried out

 Message

 Request for an operation

 Event

 Stimulus sent from one object to another

Class vs. Object

 Class defines an entity, while an object is the actual

entity

 Class is a conceptual model that defines all the

characteristics and actions required of an object, while

an object is a real model

 Class is a prototype of an object

 All objects belonging to the same class have the same

characteristics and actions

Class and Objects – Example
class Trainee {

private int empId;

private String empName;

private float basic;

private float hra;

public void SetData(int iEmpId,
String acEmpName, float fBasic,
float fHRA) {

………. }

public void CalculateSal() {

………. }

public void CalculateTax() {

…………}

} //class Trainee ends here

public static void main(String [] args) {

/* Object Creation */

Trainee oT1 = new Trainee();

/* Invoking SetData */

oT1.SetData(101,”Hamza”,1200,150)

/* Invoking CalculateSal */

oT1.CalculateSal();

/* Invoking CalculateTax */

oT1.CalculateTax();

}

Memory allocation for Classes and Objects

Class (Common to all objects)

Code for SetData()

Code for CalculateSal()

Code for CalcuateTax()

Information about

Data Members

class Trainee {

private int m_iEmpId;

private float m_fBasic;

private float m_fHRA;

private float m_fSalary;

public void SetData(int iEmpId, float fBasic,

float fHRA){

}
public void CalculateSal() {

// code goes here

}

public void CalculateTax() {

//code goes here

}

}

Trainee oT1 = new Trainee();

Trainee oT2= new Trainee();

Class (Common to all objects)

Code for SetData()

Code for CalculateSal()

Code for CalcuateTax()

Information about Data

Members

Object T1

EmpId Basic Hra Sal

Object T2

EmpId Basic Hra Sal

Object-Oriented Programming

The same terminology

is used in most object-

oriented programming

languages.

Object

Instance

Property

Method
Instantiation

Class
State

Message

