
Session 4-2

Objectives

 Implement Constructors

 Implement Destructors in

 Explain the working of Garbage Collector

Object Orientation

Method Overloading

Access Modifiers

Encapsulation

Static Members

This pointer

Modifiers - I

Modifiers restrict access to variables by other classes

They are keywords that give additional meaning to variables, code, and classes

Modifiers enhances the encapsulation features of OOP
M

o
d

if
ie

r
s

Class A

Methods

Class B

Methods

Modifiers - II

class Stack

{

int[] stak = new int[10];

int size ;

int top = -1;

Stack(int s)

{

top = -1;

size=s;

}

void push(int it)

{

if(top==this.size-1)

System.out.println(“Stack is full “);

Modifiers - III

else

stack[++top] = it;

}

int pop()

{

` if(top < 0)

{

System.out.println(“Stack underflow “);

return 0 ;

}

else

return stack[top--];

}

Modifiers - IV

class Test {

Stack S = new Stack();

………..

System.out.println(“The stack size “ +

S.size);

………}

Modifiers - V
modifiers

public

private

Protected

Final static

abstract

native

synchronized

Public

Class x

Application A Application B

Class y

Public
methods

Protected
Class A

Sub-class 1 Sub-class 2

Protected methods
and variables

Accessible to sub
classes

Private
Private methods

class

Methods and data members accessible

only to the members of the same class

Class Specification Private Default Protected Public

Same class Yes Yes Yes Yes

Same package- different class No Yes Yes Yes

Different package- sub class No No Yes Yes

Different package- different class No No No Yes

Static Variables
Lifetime of static variable is throughout the program life

 If static variables are not explicitly initialized then they are
initialized to 0 of appropriate type

Static Data Member
Definition

“A variable that is part of a class, yet is not part of an
object of that class, is called static data member”

Static Data Member
They are shared by all instances of the class

They do not belong to any particular instance of a class

Class vs. Instance Variable
Student s1, s2, s3;

Class Space

s1(rollNo,…)

s2(rollNo,…)

s3(rollNo,…)

Instance Variable

Class Variable

Static Data Member (Syntax)
 Keyword static is used to make a data member

static

class ClassName{

…

static DataType VariableName;

}

Initializing Static Data Member
Static data members should be initialized

once at file scope

They are initialized at the time of definition

Life of Static Data Member
They are created even when there is no object of a

class

They remain in memory even when all objects of a
class are destroyed

Static - I

class Cvar

{

static String name="Aladdin";

//. . constructor

static void showName(){

. . .

System.out.println("Static name:" + name);

}

}

Static - II
class Staticvar

{

static int s = 20;

static void print()

{

System.out.println(“From the class : “ + s);

}

}

class Display

{

public static void main(String args[])

{

Staticvar.print();

System.out.println(“From outside the class : “ +

Staticvar.s);

}

}

Uses
They can be used to store information that is required by all

objects, like global variables

Example
Develop Student class such that one can know the number

of student created in a system

Example
class Student{

…

public static int noOfStudents=0;

public Student(){

noOfStudents++;

}

…

}

Example
public static void main(String[] args) {

System.out.println(Student.noOfStudents);

Student s = new Student();

System.out.println(Student.noOfStudents);

Student s1 = new Student();

Student s2= new Student();

Student s3 = new Student();

Student s4 = new Student();

System.out.println(Student.noOfStudents);

}

Output:
0
1
5

Problem
 noOfStudents is accessible outside the class

 Bad design as the local data member is kept public

Static Member Function
Definition:

“The function that needs access to the members of a class, yet
does not need to be invoked by a particular object, is called
static member function”

Static Member Function
 They are used to access static data members

 Access mechanism for static member functions is same as that of static
data members

 They cannot access any non-static members

Example
class Student{

private static int noOfStudents;

int rollNo;

public static int getTotalStudent(){

return noOfStudents;

}

}

Class Display{

public static void main(String [] args){

int i = Student.getTotalStudents();

}

}

Accessing non static data members
static int getTotalStudents(){

return rollNo;

}

………

public static void main(String [] args){

int i = Student.getTotalStudents();

/*Error: */

}

Final
‘Final’ modifier when used with :

Variable

Method

Class

Indicates that once a value is assigned, it

cannot be changed

Indicates that method body cannot be

overridden

Indicates that this class cannot be

inherited

Native

The ‘native’ modifier indicates that a method body

has been written in a language other than Java, like C

or C++

native void codeSomeWhere()

{

// C / C++ Code

}

Modifier Method Variable Class

Public Yes Yes Yes

Private Yes Yes Yes(Nested

Classes)

Protected Yes Yes Yes(Nested

Classes)

Abstract Yes No Yes

Final Yes Yes Yes

Native Yes No No

Modifiers Snap Shot

this Pointer
class Student{

private int rollNo;

………

public int getRollNo(){…}

public void setRollNo(int aRollNo)

{…}

}

this Pointer
The compiler reserves space for the functions defined in the

class

Space for data is not allocated (since no object is yet created)

Function Space
getRollNo(), …

this Pointer
Student s1, s2, s3;

Function Space
getRollNo(), …

s1(rollNo,…)

s2(rollNo,…)

s3(rollNo,…)

this Pointer
 Function space is common for every object

 Whenever a new object is created:

 Memory is reserved for variables only

 Previously defined functions are used over and over again

this Pointer
 Memory layout for objects created:

s1
rollNo, …

Function Space
getRollNo(), …

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

•How does the functions know on which object to act?

this Pointer
 Address of each object is passed to the calling function

 This address is deferenced by the functions and hence they act on correct
objects

address

s1
rollNo, …

s2
rollNo, …

s3
rollNo, …

s4
rollNo, …

address address address

•The variable containing the “self-address” is called this
pointer

Passing this Pointer
 Whenever a function is called the this pointer is passed as a parameter to

that function

 Function with n parameters is actually called with n+1 parameters

Example
void setName(String a)

is internally represented as

void setName(String a, const Student * this)

Compiler Generated Code
Student(){

rollNo = 0;

}

Student(){

this.rollNo = 0;

}

Introducing Nested and Inner Classes
Class Person

Private data member

Name

Age Class Hands
Private data members

length

Skin_color

Not
Accessible
From enclosing class

Accessible
From enclosed class

Introducing Nested and Inner Classes

class Outer {

private int out_A =100;

void access()

{

Inner inn = new Inner();

inn.display();

}

class Inner {

void display() {

System.out.println(" display the private data of

Outer class, out_A = " + out_A);

}

}

}
}

Introducing Nested and Inner Classes

class Output

{

public static void main(String args[])

{

Outer out = new Outer();

out.access();

}

}

