

/‘-

/ e e
Operator Overloading (1)

» Overloading an operator means making it
behave differently.

int result = Int.Add (54, 200y »

int result: = 54 4+ Z200;

» We use operators to make equations look simple
and easy to understand.

> A list of operators that can be overloaded are

as follows:
+ . | ~ ++ -
f e & .
o e} o ilﬁ o= >z

e AN

. 9

‘Operator overloading

Consider the following class:

class Complex{

private double real, img;

public Complex Add(Complex c);
public Complex Subtract(Complex cm) ;

public Complex Multiply (Complex cs) ;

. 9

Operator overioading

Function implementation:

Complex Add (Complex cl)

{
Complex t;

t . real = real * cl real:
t.img = img + ¢l img;
return t-

}

- o

Operator overioading
The following statement:
e Complex c3 = cl.Add(c2);

e Adds the contents of ¢2 to ¢1 and assigns it to
c3

. 9

—

Operator overioading

To perform operations in a single
mathematical statement e.g:

e cl+c24+c3+c4

We have to explicitly write:
cl.Add (c2.Add(c3.Add(c4)))

- o

Operator overioading

Alternative way is:
£l = ¢3 . Add(c4) ;
t2 = c2.Add(t1) ;
3 = cl Add(t2)

e e

—a

Operator overloading

[f the mathematical expression is big:

e Converting it to C# code will involve complicated
mixture of function calls

* Less readable
e Chances of human mistakes are very high

e Code produced is very hard to maintain

. 9

—

Operator overloading

C# provides a very elegant solution:
“Operator overloading”

C# allows you to overload common operators like +, -
or * etc...

Mathematical statements don't have to be explicitly
converted into function calls

- o

Operator overloading

Assume that operator + has been overloaded

Actual C# code becomes:

i U A B e U ¢

The resultant code is very easy to read, write
and maintain

e e

Operator overloading

C# automatically overloads operators for pre-defined
types

Example of predefined types:
° int

e float

e double

e char

e long

e e ARSI

e e

—a

Operator overioading

Example:

e float x;

e int y;

ex = 102.02 + 0.09;
ey = 50 + 4.7

/ —

Operator overloading

The compiler probably calls the correct overloaded low
level function for addition i.e:

e // for integer addition:

e Add(int a, int b)

o // for float addition:
o Add(float a, float b)

- o

Operator Overloading

Operators are static methods whose return values
represent the result of an operation and whose
parameters are the operands. When you create an
operator for a class you say you have “overloaded”
that operator, much as you might overload any
member method.

public static Fraction operator+(Fraction lhs, Fraction rhs)

— —

Operator Overioading

u=ing Svystem s

public =struct Time

{

public Time(int hour=s, int minates])
1

this.hours = hours:

Chis.minates = minuates:

*

int hours, minutes:
public =tatic Time operator + (Time Ffiryr=t, Time =econd)

i
return new Time{(first.hour=s + =Second.hour=s, firs=t.minutes +
Second . manute=) ;
¥
public =static wwoid Mairn i)
1
Time =tart = new Time (] -
Time duratiornn = mnew Time] :
Time fFfinish = new Time) :

Start.hours = 12:
start.mirnmites = 10;

duration.houars = 1:
duration.mingtes = Z0;
finmish = start + duration:

Console.WMriteline (" Fini=sh time wonld be @ {0 hours amnd {13
minmate=s. ", finish.hours,
finish.minutes] =

b
L

Fini=sh titme would he : 13 hours and 40 minutes.

	Operator Overloading [C#]
	Slide 2
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator overloading
	Operator Overloading
	Slide 15

