 OBJECT ORIENTED PROGRAMMING
LAB# 07 TASKS
[bookmark: _GoBack]Polymorphism in Java

1.Create a payroll system using classes, inheritance and polymorphism
Four types of employees paid weekly
a. Salaried employees: fixed salary irrespective of hours
b. Hourly employees: 40 hours salary and overtime (> 40 hours)
c. Commission employees: paid by a percentage of sales
d. Base-plus-commission employees: base salary and a percentage of sales

The information know about each employee is his/her first name, last name and national identity card number. The reset depends on the type of employee.
[image:]

Step by Step Guidelines

Step 1: Define Employee Class

· Being the base class, Employee class contains the common behavior. Add firstName, lastName and CNIC as attributes of type String
· Provide getter & setters for each attribute
· Write default & parameterized constructors
· Override toString() method as shown below
public String toString() {
return firstName + “ ” + lastName + “ CNIC# ” + CNIC ;
}

· Define earning() method as shown below
	public double earnings() {
	return 0.00;
}

Step 2: Define SalariedEmployee Class

· Extend this class from Employee class.
· Add weeklySalary as an attribute of type double
· Provide getter & setters for this attribute. Make sure that weeklySalary never sets to negative value. (use if)
· Write default & parameterize constructor. Don’t forget to call default & parameterize constructors of Employee class.
· Override toString() method as shown below
public String toString() {
 return “\nSalaried employee: ” + super.toString();
}
· Override earning() method to implement class specific behavior as shown below
public double earnings() {
	return weeklySalary;
}

Step 3: Define HourlyEmployee Class

· Extend this class from Employee class.
· Add wage and hours as attributes of type double
· Provide getter & setters for these attributes. Make sure that wage and hours never set to a negative value.
· Write default & parameterize constructor. Don’t forget to call default & parameterize constructors of Employee class.
· Override toString() method as shown below
public String toString() {
return “\nHourly employee: ” + super.toString();
}

· Override earning() method to implement class specific behaviour as shown below
public double earnings() {
if (hours <= 40){
return wage * hours;
}
else{
return 40*wage + (hours-40)*wage*1.5;
}
}
Step 4: Define CommissionEmployee Class
· Extend this class form Employee class.
· Add grossSales and commissionRate as attributes of type double
· Provide getter & setters for these attributes. Make sure that grossSales and commissionRate never set to a negative value.
· Write default & parameterize constructor. Don’t forget to call default & 	parameterize constructors of Employee class.
· Override toString() method as shown below
public String toString() {
return “\nCommission employee: ” + super.toString();
}

· Override earning() method to implement class specific behaviour as shown below
public double earnings() {
return grossSales * commisionRate;
}

[bookmark: Pg4]Step 5: Define BasePlusCommissionEmployee Class

· Extend this class form CommissionEmployee class not from Employee class. Why? Think on it by yourself
· Add baseSalary as an attribute of type double
· Provide getter & setters for these attributes. Make sure that baseSalary never sets to negative value.
· Write default & parameterize constructor. Don’t forget to call default & 	parameterize constructors of Employee class.
· Override toString() method as shown below
public String toString() {
return “\nBase plus Commission employee: ” + super.toString();
}

· Override earning() method to implement class specific behaviour as shown below
public double earnings() {
return baseSalary + super.earning();
 }
Step 6: Putting it all Together

public class PayRollSystemTest {
 public static void main (String [] args) {

 Employee firstEmployee = new SalariedEmployee("Usman" ,"Ali","111-11-1111", 800.00);

 Employee secondEmployee = new CommissionEmployee("Atif" ,"Aslam", "222-22-2222", 10000, 0.06);

 Employee thirdEmployee = new BasePlusCommissionEmployee("Rana", "Naseeb", "333-33-3333", 5000 , 0.04 , 300);

 Employee fourthEmployee = new HourlyEmployee("Renson" , "Isaac", "444-44-4444" , 16.75 , 40);

 // polymorphism: calling toString() and earning() on Employee’s reference
 System.out.println(firstEmployee);
 System.out.println(firstEmployee.earnings());
 System.out.println(secondEmployee);
 System.out.println(secondEmployee.earnings());

 System.out.println(thirdEmployee);
 // performing downcasting to access & raise base salary
 BasePlusCommissionEmployee currentEmployee =
 (BasePlusCommissionEmployee) thirdEmployee;

 double oldBaseSalary = currentEmployee.getBaseSalary();
 System.out.println("old base salary: " + oldBaseSalary) ;

 currentEmployee.setBaseSalary(1.10 * oldBaseSalary);
 System.out.println("new base salary with 10% increase is:"+ currentEmployee.getBaseSalary());

 System.out.println(thirdEmployee.earnings());

 System.out.println(fourthEmployee);
 System.out.println(fourthEmployee.earnings());

 } // end main
} // end class

2. You have to implement the following diagram including some attributes and other functions:

[image:]
image1.png
Employee

SalariedEmployee

CommissionEmployee

HourlyEmployee

BasePlusCommissionEmployee

image2.png
Shape

[*GetAreal}

Square

Circle

[length

|[radius

Gethreal)

[+GetArea()

N

Rectangle

[length
|-width

[+GetArea()

