Pointers & Structures

SESSION 9

Pointers

A special variable that contains the “address” of the memory location
of another variable

Declaring a pointer variable in C

Int *p

Introduction to Pointers

When we declare a variable some memory is allocated for it. The memory
location can be referenced through the identifier “i”. Thus, we have two
properties for any variable : its address and its data value. The address of the
variable can be accessed through the referencing operator “&”. “&i” gives the
memory location where the data value for “i” is stored.

A pointer variable is one that stores an address. We can declare pointers as
follows int* p; .This means that p stores the address of a variable of type int.

Introduction to Pointers

Q: Why is it important to declare the type of the variable that a pointer points
to? Aren’t all addresses of the same length?

A: It’s true that all addresses are of the same length, however when we perform

o

an operation of the type “p++” where “p” is a pointer variable, for this
operation to make sense the compiler needs to know the data type of the

o 0

variable “p” points to. If “p” is a character pointer then “p++” will increment “p
by one byte (typically), if “p” were an integer pointer its value on “p++” would
be incremented by 2 bytes (typically).

Introduction to Pointers

Summary of what was learnt so far:
° Pointer is a data type that stores addresses, it is declared as follows:
int* a;

char* p; etc.

° The value stored in a pointer p can be accessed through the dereferencing operator

usn
.

° The address of a memory location of a variable can be accessed through the reference
operator “&”.

> Pointer arithmetic: only addition and subtraction are allowed.

Pointers and Arrays

The concept of array is very similar to the concept of pointer. The identifier of

an array actually a pointer that holds the address of the first element of the
array.

Therefore if you have two declarations as follows:
° “int a[10];” “int* p;” then the assignment “p = a;” is perfectly valid
o Also “*(a+4)” and “a[4]” are equivalent as are “*(p+4)” and “p[4]” .

> The only difference between the two is that we can change the value of “p” to any

integer variable address whereas “a” will always point to the integer array of length 10
defined.

Character Pointers, Arrays and Strings

What is a String?
o Astring is a character array that is ‘\O’ terminated.

° E.g. “Hello”

What is a Character array?
° |tis an array of characters, not necessarily ‘\0’ terminated
o E.g.chartest[4] ={@’, ‘b, ’c/, d’}; <this char array is not zero terminated>

What is a character pointer?
° |t is a pointer to the address of a character variable.

o E.g.char* a; <this pointer is not initialized>

Examples

char* a = “Hello”;
° a->gives address of ‘H’

o *a3->gives ‘H
> a[0] -> gives ‘H’
° a++ -> gives address of ‘e’

o *a++ -> gives ‘e’

° a=&b; where b is another char variable is perfectly LEGAL. However “char a[100];” “a
=&b;” where b is another char variable is ILLEGAL.

Assigning an Address to a pointer

inta=10
int *p
p=&a
a P
10 int a=10, int *p
Address 100 104
10 100 =&a
e P
Address 100 104

Pointers (Contd.)

9

char ¢ = ‘s’, *cp

cp = &C

c is a variable of type character

cp is a pointer that points to c

Retrieving Values from a Pointer

int num1=2,num2,*pnt
pnt=&num1
num2=*pnt

numl pnt num2

2 int num1,num2,*pnt
Address 100 104 108

2 100 pnt=&num1l

Address 100 104 108
|]
2 100 2 | num2=*pnt

Address 100 104 108

Pointers in C#

POINTER

A pointer is a programming language object, whose value
refers to (or "points to") another value stored elsewhere
in the computer memory using its memory address.

A pointer is a variable whose value is the address of
another variable i.e., the direct address of the memory
location. similar to any variable or constant, you must
declare a pointer before you can use it to store any
variable address.

Pointer types are not tracked by the default garbage
collection mechanism.

Unsafe Codes

The C# statements can be executed either as in a safe or in an unsafe
context. The statements marked as unsafe by using the keyword unsafe
runs out side the control of Garbage Collector. Remember that in C# any

code involving pointers requires an unsafe context.

Remember to enable unsafe code in the Project Designer; choose
Project, Properties on the menu bar, and then select Allow unsafe code
in the Build tab.

2 Build
Rebuild
Clean

&r Publish...
Run Code Analysis
Scope to This

Mew Solution Explorer View
Calculate Code Metrics

Add
Add Reference...
Add Service Reference

[-] Manage MuGet Packages...
*z View Class Diagram
=¥

Set as Startllp Project

Debug
Ea Add Solution to Source Control...
> Cut

b Paste

2 Remowe

) Rename

Unload Project
€* Open Felder in File Explorer
-

Properties

}’”’1 {

Chrl+ X
Crl+W
Deel

Solution Explorer

| e A s s ER -

Search Sclution Explorer (Ctrl+:) = -
&1 Sclution 'ConsclefApplication2’ (1 project)

oject File ConsoleApplication2.csproj

oject Folder ChUsers\Administratoridocumer
ect File

narme of the file containing build, configuration, and other
rnation about the project.

Allow unsafe code

Application]] - -
Configuration: | Active (Debug) e | Platform: | Active (Any CPU) e |

Build Events 3eneral
Debug . .

Conditienal compilation symbols: | |
Resources

Define DEBUG constant
Services

_ Define TRACE constant

Settings
Reference Paths Platform target: Any CPU w
Signing Prefer 32-bit
Security Allow unsafe code
Publish [] Optimize code
Code Analysis

Errors and warnings

Warning level: |4 w

Suppress warnings: |

representation

type® identitier;

Example Description
int* p p is a pointer to an integer.,
int*[] p p is a single-dimensional array of pointers to integers.
char* p p Is a pointer to a char.
volid* p p Is a pointer to an unknown type.

O perator/Statement Use

= Performs pointer indirection.

The pointer indirection operator * can be used to access
the contents at the location pointed to by the pointer
variable.

g Obtains the address of a variable,

class Program

k blic stati f id Method() 5239164
ublic static unsafe woid Metho
: [5239156
int x = 18; IE
int y = 28;
int* ptrl = &x; 2

int* ptr2 = &y;
Console.WriteLine((int)ptrl);//address of x
Conscle.WriteLine((int)ptr2);//address of y
Conscle.WriteLine(*ptrl);//value of x
Conscle.WriteLine(*ptr2);//value of y

Press any key to continue . . .

¥ .
static void Main(string[] args) ON RUNNING THE CODE
1 AGAIN
Program.Method(); 17317384
] 12317288
; 10
28
Press any key to continue . . .

Eublic static unsafe void Swap(int* a, int* b) ﬁ C:\WINDGWTkFHFtemEEEmd'E{E

int temp;

temp = *aj; Walues before swap numl=% numZ=7
*a = "b; Values after swap numl=7 numZ=5
*b = temp;

Press any key to continue . . .

static unsafe void Main(string[] args)

1

int numl = 5;
int num2 = 7;
int* x = &numl;
int* y = &num2;

Conscle.Writeline("Values before swap numl=" +%x + " num2=" +%y);
Program.Swap(x,y);

Conscle.Writeline("Values aftter swap numl=" + *x + " num2=" + *y);
¥

¥

Structure

A data type that holds different types of data within a single group

struct Books {
public string title;
public string author;
public string subject;
public int book_id;

Iy

Defining a Structure

Start
Structure employee

{

char name[10]
char address[20]
float salary

}
End

Structure keyword declares a structure in algorithms
name, address and salary are the members of the structure

employee is the structure name

Defining a Structure (Contd.)

= The members within the structure employee

can be visualized as:

char char

name[10] address[20]

float

o01({2 ..9|10}|0|1(2 ...

19

20

salary

Defining a Structure (Contd.)

Start
Structure employee

{

char name[10]
char address[20]
float salary

}

Structure employee el
End

m Structure el of the type employee is created

Accessing the Members of a
Structure

Members of structure are accessed as:
Structure variable.Member variable

Example: To access members of structure el
el.name

el.address
el.salary

Structure variables can be assigned values
el.name = “Jackson”
el.address = “15/2, New York”
el.salary = 500,000

Structures (Example)

To calculate the area of a rectangle:
Start

Structure rectangle

{

Int length

Int breadth

¥

Structure rectangle rect
declare area as integer
rect.length = 10
rect.breadth = 2

area = rect.length * rect.breadth
End

Variant of a Structure

Start
Structure rectangle

{
Int length

Int breadth

¥
Structure rectangle rect = {10,2}

End

Variable rect is defined and the values 10 and 2 is
assigned for its members

struct Books { Book?2.title = "Telecom Billing";
public string title; Book2.author = "Zara Ali";

public string author; Book2.subject = "Telecom Billing Tutorial";

sl s sulsect Book2.book_id = 6495700;

public int book_id; Console.WriteLine("Book 1 title : {0}", Book1.title);
|5 Console.WriteLine("Book 1 author : {0}", Book1.author);

. . . .) C le. WriteLine("Book 1 book_id :{0}", Book1.book_id);
public static void Main(string[] args) { onsole WriteLine("Book 1 book_id :{0}", Book1.book_id)

Console.WriteLine("Book 2 title : {0}", Book?2.title);

Books Book1;
Console.WriteLine("Book 2 author : {0}", Book2.author);
Books Book2; Console.WriteLine("Book 2 subject : {0}", Book2.subject);

itle = " ing" Console WriteLine("Book 2 book_id : {0},
Book1.title = "C# Programming"; Book‘;‘;goek i;')_e ine("Book 2 book_id : {0}

Bookl.author = "Nuha Ali"; Console.ReadLine();

Bookl.subject = "C# Programming Tutorial"; }

Book1.book_id = 6495407, }

> CUStom data Types .;truct Testatruct

{
public TestStruct ()

» Can have methods {

f/Constructor Implementation

¥

> Can have constructors | mkis Hethodt O

F/Methodl Implementation
{

> CannOt implement public int dataMember:
inheritance .

struct Books
{

public string title;

public string author;

public string subject;

public int book_id;

public Books(string t, string a, string s, int id)

{
title = t;
author = a;
subject =s;
book_id =id;

}

public void Display()

{
Console.WriteLine("Title : {0}", title);
Console.WriteLine("Author : {0}", author);
Console.WriteLine("Subject : {0}", subject);
Console.WriteLine("Book_Id :{0}\n",

book_id);
}
I

class Program

{
public static void Main(string[] args)

{
Books Bookl = new Books("C#

Programming", "Nuha Ali", "C# Programming
Tutorial", 6495407);

Books Book2 = new Books("Telecom Billing",
"Zara Ali", "Telecom Billing Tutorial", 6495700);

Book1.Display();
Book2.Display();
Console.ReadLine();

}

Enumerators (1)

» They are a set of named constants.

using System;
public class food

{
public enwum foodType

{

Pizza,
Pasta,
Spaghetti,
i

public void GetFoodOrder (3tring CustName, foodType order)

{
//Process EgodOrder

}

static void Main{)

{

food myDinner = new food();

myDinner. GetFoodorder (M3coohy”, food,.foodType.Pizza)l;

;
!

Enumerators (2}

» Enumerators in C# have numbers associated
with the values.

> By default, the first element of enum is assigned
a value of 0 and is incremented for each
subsequent enum element.

» The default value can be overridden during
initialization.

public enum foodType
i
Pizza = 1,
Pasta = 3,
spaghettl = 5,
h

	Pointers & Structures
	Pointers
	Introduction to Pointers
	Introduction to Pointers
	Introduction to Pointers
	Pointers and Arrays
	Character Pointers, Arrays and Strings
	Examples
	Assigning an Address to a pointer
	Pointers (Contd.)
	Retrieving Values from a Pointer
	Pointers in C#
	POINTER
	Unsafe Codes
	Allow unsafe code
	representation
	Slide 17
	Slide 18
	Slide 19
	Structure
	Defining a Structure
	Defining a Structure (Contd.)
	Defining a Structure (Contd.)
	Accessing the Members of a Structure
	Structures (Example)
	Variant of a Structure
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

