ARRAYS

SESSION 7

Session Objectives

Identify single dimensional arrays

Identify two dimensional arrays

Arrays

A group of elements, which are of the same size, same data type and
have the same name

Arrays (Contd.)

Program to add 5 numbers using 5 variables:
Start

Declare num1, num2, num3, num4, num5 and Sum as integers
Accept numl

Accept num2

Accept num3

Accept num4

Accept nums

Sum = numl+num2+num3+num4+nums

Display Sum

End

Arrays (Contd.)

Disadvantages of the above program:
> Number of variables to be declared

> Repetition of the code

Arrays (Contd.)

Program to add five numbers using a single variable and a
loop

Declare num, sum and count as integers
sumisO

countis 0

while (count <5)

do
Accept value into num
Add to the value in sum

Increment the value of count by 1
enddo

Display sum

Arrays (Contd.)

Declaration
Array num[5] as an integer

Array is just a word used in an algorithm to declare an array
num|[5] translates to num[0],num|[1]...num[4]
5 is called the array bounds

The array bound sets the maximum number of elements that the array
can handle

Arrays (Example)

Start

Array num[5] is an integer

Declare sum, count as integers

sum=0

count=0

while (count<5)

do
Accept value into num[count]
Add num[count] to the value in sum
Increment the value of count by 1

enddo

Display sum

End

Array Index

Indicates the array element to be accessed
Also referred to as a subscript or the dimension
Written using the convention:

Array_Name [Index]

Typically starts at 0

Arrays in C

Arrays are objects

o Arrays are allocated by new, manipulated by reference

int [] a = new int [100];

Arrays can be initialized[Dense Array]
int [] smallPrimes ={2,3,5,7,11,13};

The array data structure

An array is an indexed sequence of components
> Typically, the array occupies sequential storage locations

> The length of the array is determined when the array is created,
and cannot be changed

> Each component of the array has a fixed, unique index

° Indices range from a lower bound to an upper bound

° Any component of the array can be inspected or
updated by using its index

Arrays in C

Array indices are integers

> The bracket notation a[i] is used (and not overloaded)

> Bracket operator performs bounds checking

An array of length N has bounds O and n-1

Arrays in C

Arrays are reflective

 a.length is the length of array a
for (int i= 0; i < a .length; i++)
Console.WriteLine(a[i]);

Declaring an Array

An array must be declared before assigning a value to it. In C#, an integer
array is declared as:

Int[] num=new int[3]

Array names are chosen according to the same rules used for naming
variables

Each element of an array can be used anywhere that a variable can be
used

Assigning Values to Array Elements

Assigning value to the third element of an integer array
num[2] =10

Assigning values to a character array
Array var[3] is a character

var[0] = ‘L
var[l] = ‘0’
var[2] =g’

Arrays (Contd.)

Retrieving values from an array
I = num[5]

Array elements in memory
num[5] is an integer
o Requires 5 integers * 4 bytes per integer = 20 bytes

° Array elements are stored in consecutive memory locations

Subscripting

Suppose

int [] A = new int[10]; // array of 10 integers A[O0],.. A[9]
To access individual element must apply a subscript to list name A

m A subscript is a bracketed expression also known as the index

m First element of list has index O

A[O]
m Second element of list has index 1, and so on
A[1l]
m Last element has an index one less than the size of the list
A[9]
m Incorrect indexing is a common error
A[10] // does not exist

Array Elements

Suppose

int [] A = new int[10]; // array of 10 uninitialized ints

A —

A[O0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

To access an individual element we must apply a subscript to
list name A

Array Element Manipulation

Consider

int i =7, j =2, k = 4;
A[0] = 1;

A[i] = 5;

A[3j] = A[i] + 3;

A[j+1] = A[i] + A[O];

A[A[]j]] = 12;

A[k]=Convert.ToInt32 (Console.ReadLine()); // where

next input
value is 3

A — — — — — — — — — — — — — — — — — —

A[O] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

A[i] = 5;

A[j]l = A[i] + 3;
A[j+1] = A[i] + A[O];

A[A[]]] = 12;

A[k]=Convert.ToInt32 (Console.ReadLine()); // where
input

next
value is 3

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

Ali] = 5;

A[j]l = A[i] + 3;
A[j+1] = A[i] + A[O];

A[A[]j]] = 12;
A[k]=Convert.ToInt32 (Console.ReadLine()); // where

next
value is 3

input

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

A[i] = 5;

A[j] = A[i] + 3;
A[j+1] = A[i] + A[O];

A[A[]]] = 12;

A[k]=Convert.ToInt32 (Console.ReadLine()); // where
next input
value is 3

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

A[i] = 5;

A[j] = A[i] + 3;
A[j+1] = A[i] + A[0];

A[A[]j]] = 12;

A[k]=Convert.ToInt32 (Console.ReadLine()); // where
next input
value is 3

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

A[i] = 5;

A[j] = A[i] + 3;
A[j+1] = A[i] + A[O];
A[A[7]] = 12;

A[k]=Convert.ToInt32 (Console.ReadLine()); // where
next input

value is 3

Array Element Manipulation

Consider

int i =7, =2, k = 4;
A[0] = 1;

A[i] = 5;

A[j] = A[i] + 3;
A[j+1] = A[i] + A[O];
A[A[]]] = 12;

A[k]=Convert.ToInt32 (Console.ReadlLine()); // where next
input value is 3

Two Dimensional Arrays

Physics Chemistry M athe matics
Julia 45 60 90
Ben 20 67 92
Nicholas 90 35 56
Demi /8 50 80

This table consists of 4 rows and 3 columns

Two-dimensional arrays ||

In a 2D array, we generally consider the first index to be the row, and the
second to be the column: a[row, col]

columns
o 1 2 3 4
00 01 02 03 04
,0 1,1 1,2 1,3 1,4
20 21 22 23 24
30 31 32 33 34

rows

W NRKRO

2D arrays in C

CH# does support real 2D arrays
o int [,] X; denotes a 2D array X of integer components

We can define the above array like this:
int[,] X = new int[5,8];
and treat it as a regular 2D array

foreach Repetition Structure

The foreach repetition structure is used to iterate
through values in arrays

No counter

A variable is used to represent the value of each
element

foreach (int Mark in Marks)

{
if (Mark < 50)

Console.Writeline (“Fail”) ;

Dynamic array

CH# supports both static and dynamic arrays.

A static array has a fixed size and defined when an array is declared. The
following code defines an array that can hold 5 int type data only.

int[] odds = new int[5];

A dynamic array does not have a predefined size. The size of a dynamic
array increases as you add new items to the array. You can declare an array
of fixed length or dynamic. You can even change a dynamic array to static
after it is defined. The following code snippet declares a dynamic array
where the size of the array is not provided.

int[] numArray = new int[] {};

Cont....

Dynamic arrays can be initialized as static arrays. The following code
snippet declares a dynamic array and initializes.

int[] numArray =newint[]{1,3,5,7,9, 11, 13 };

Dynamic array of a collection/Generic data type

List<string> courses = new List<string>();
courses.Add(“Computer Programming");
courses.Add(“Applied Calculus");
courses.Add(“Applied Physics");

courses.Add(“Computing Fundamental);

foreach (string c in courses)
Console.WritelLine(c);

Console.WritelLine(courses[1]);

Cont....

A foreach loop can be used to iterate through the elements of an array.

// Dynamic array of string type

string[] strArray = new string[] { "Muhammad Zeeshan",
“Asif Raza", "Aleem Ahmed", “Azam Khan" };

foreach (string str in strArray)

Console WriteLine(str);

When to use dynamic arrays

Unless you limit an array size, the default arrays are dynamic arrays.
Dynamic arrays are used when you’re not sure about the number of
elements an array can store. Static arrays should be used when you do
not want an array to hold more items than its predefined size.

ArrayList collection

C# Arraylist is a non-generic collection. The ArrayList class represents an
array list and it can contain elements of any data types. The ArrayList
class is defined in the System.Collections namespace. An ArraylList is
dynamic array and grows automatically when new items are added to
the collection

The ArrayList class is often used to work with a collection of objects. It is
a dynamic collection and provides built-in methods to work with list
items such as add items, remove items, copy, clone, search, and sort
array.

Cont...

static void Main(string[] args)

{

ArraylList personList= new ArraylList();
personList.Add(“Asif");
personList.Add(“Asim");
personList.Add(24);

foreach (var item in personlList)

{
Console.WriteLine(item);
}
}

ArrayList Common Methods
_ Methods . Descripton

Add()/AddRange() Add() method adds single elements at the end of ArrayList.
AddRange() method adds all the elements from the specified collection into ArrayList.

Insert()/InsertRange() Insert() method insert a single elements at the specified index in ArrayList.
InsertRange() method insert all the elements of the specified collection starting from
specified index in ArrayList.

Remove()/RemoveRange() Remove() method removes the specified element from the ArrayList.
RemoveRange() method removes a range of elements from the ArrayList.

RemoveAt() Removes the element at the specified index from the ArrayList.

Sort() Sorts entire elements of the ArrayList.

Reverse() Reverses the order of the elements in the entire ArrayList.

Contains Checks whether specified element exists in the ArrayList or not. Returns true if exists
otherwise false.

Clear Removes all the elements in ArrayList.

CopyTo Copies all the elements or range of elements to compitible Array.

IndexOf Search specified element and returns zero based index if found. Returns -1 if element not
found.

ToArray Returns compatible array from an ArrayList.

Python Array

cars = ["Ford", "Volvo", "BMW"]

x = cars[0]

cars[0] = "Toyota“

x = len(cars)

for x in cars:
print(x)

cars.append("Honda")
cars.remove("Volvo")
#Delete the second element of the cars array:

cars.pop(1)

Conclusions

Arrays have the following advantages:
o Accessing an element by its index is very fast (constant time)

Arrays have the following disadvantages:
o All elements must be of the same type
° The array size is fixed and can never be changed
° Insertion into arrays and deletion from arrays is very slow.

